Disney MagicBands: as important symbolically for IoT as substantively!

(I’ve been meaning to write about this particular IoT device for a long time — my apologies for the delay)

I have no objective evidence for this, but I suspect that many C-level executives first learned about e-commerce when they placed personal orders during the Christmas season of 1995. Thus, Amazon deserves a disproportionate share of credit for launching the e-commerce era.

Magic Bands play a number of roles at Disney parks

Similarly, I suspect that many C-level executives’ first direct experience with the Internet of Things has come, or may come this holiday season, with their family’s first visit to Disneyworld since Disney began the beta testing of its MagicBands, which are arguably the most high-profile public IoT devices so far.

IMHO, Disney deserves a lot of credit for such a public IoT project, especially many of the initial reviews were decidedly mixed due to technical and management glitches — risking irritating customers. 

The project reportedly cost north of $1 billion.

The major lesson to decision makers in other industries to be gained from the MagicBand is my favorite IoT “Essential Truth“: who else can use this data?

Disney uses the band data, either by itself, or aggregated with other visitors, to improve almost every aspect of park operations, marketing, and the customer experience — illustrating the versatility of IoT devices:

  • control logistics, speeding entry to the park and individual rides
  • coordinate outside transportation
  • balance demand for various rides
  • add new functionality to existing technology such as the Disney app
  • control mechanical systems, such as hotel door locks
  • add a social component (and avoid the stresses of families getting
  • handle and speed in-park financial transactions
  • personalize the park experience and improve customer satisfaction
  • harvest and analyze big data on customer preferences.

The bands, which work because they have RFID chips inside, are worn on your wrist throughout your stay at the parks. When you book the trip, Disney lets you choose your favorite color, and the band comes in a presentation box with your name on it.

Before leaving, you can program it in conjunction with the My Disney Experience app and web page, entering key choices such as hotels, your favorite rides (FastPass+), dinner reservations, etc., and your credit card info so that they can be used to pay for meals and merchandise.

Disney warns visitors not to pack the bracelets in their luggage, because they are even used to board the transportation from the Orlando airport.

Putting aside the programming involved, this had to be a tremendous logistical challenge, changing the hotel locks, installing readers at each ride, putting readers in the restaurants and shops, which probably accounts for many of the glitches that customers reported during the pilot phase.

My future son-in-law, Greg Jueneman, who knows EVERYTHING about Disneyland, weighs in from a customer standpoint:

“I think they take the spontaneity out of a Disney World vacation. Everything has to be planned in advance and a schedule has to be followed. As a technology they are cool, I’m sure Disney had lots of plans for them but so far the only real thing that they do is open your hotel room without a “key” and allow you to pay for things without your cards (I’m sure Disney loves that! – some blogs Ifollow have said that spending with Magic Bands is up 40%, that’s impressive!).”

As you can imagine, there are also important data privacy and security issues: on one hand, it would probably be very cool to have Mickey come up to you and say “happy 5th birthday, Jeremy,” but that could also creep parents out, and you’d be worried about someone running up a tab on your credit card if you mislaid the band.

From my reading of the most recent media coverage, it appears that most of the beta test problems have been worked out, and that Disney is fully-committed to universal use of the bands in the future.

If you’re visiting Disney this holiday season, think about possible IoT strategy lessons for your company from the MagicBand:

  • marketing: how it can personalize the customer experience and increase sales?
  • transactions: how can it streamline transactions (have to think that Apple looked carefully at this in designing Apple Pay)?
  • operations: how can real-time data from many users help streamline operations and reduce congestion?

Maybe you can write off the family vacation as research! Have fun.

 

I’ll be on “Game Changer” Radio Today @ 3 EST Talking About IoT

Huzzah!  I’ll be a guest on Bonnie Graham’s “Coffee Break With Game Changers” show live, today @ 3 PM to discuss the Internet of Things. SAP Radio

Other guests will include David Jonker, sr. director of Big Data Initiatives at SAP, and Ira Berk, vice-president of Solutions Go-to-market at SAP, who has global responsibility for the IoT infrastructure and middleware portfolio.

Among other topics that I hope to get to during the discussion:

  • The “Collective Blindness” meme that I raised recently — and how the IoT removes it.
  • The difficult shift companies will need to make from past practices, where information was a zero-sum game, where hoarding information led to profit, to one where sharing information is the key. Who else can use this information?
  • How the IoT can bring about an unprecedented era of “Precision Manufacturing,” which will not only optimize assembly line efficiency and eliminate waste, but also integrate the supply chain and distribution network.
  • The sheer quantity of data with the IoT threatens to overwhelm us. As much as possible, we need to migrate to “fog computing,” where as much data as possible is processed at the edge, with only the most relevant data passing to the cloud (given the SAP guys’ titles, I assume this will be of big interest to them.
  • The rise of IFTTT.com, which means device manufacturers don’t have to come up with every great way to use their devices: use open standards, just publish the APIs to IFTTT, and let the crowd create creative “recipes” to use the devices.
  • Safety and security aren’t the other guy’s problem: EVERY device manufacturer must build in robust security and privacy protections from the beginning. Lack of public trust can undermine everyone in the field.
  • We can cut the cost of seniors’ care and improve their well being, through “smart aging,” which brings together Quantified Self fitness devices that improve their care and make health care a doctor-patient partnership, and “smart home” devices that automate home functions and make them easier to manage.

Hope you can listen in.  The show will be archived if you can’t make it for the live broadcast .

Perhaps Most Important Internet of Things Essential Truth: Everything’s Linked

PROCEED WITH CAUTION!

You see, I’m thinking out loud (that accounts for that sound of gears grinding….) — I really am writing this post as I mull over the subject for the first time, so you’re forewarned that the result may be a disaster — or insightful. Bear with me…

I’m working on a book outline expanding on “Managing the Internet of Things Revolution,” the introduction to IoT strategy for C-level executives that I wrote for SAP. One of the things I’ve been looking for is a theme that would bring together all of the book’s parts, which include product design, manufacturing, marketing and corporate organization, among other topics.

I think I’ve got that theme, and I think it may be the most Essential Truth of all the ones I’ve written about regarding the IoT:

Everything’s Linked!

When you think about it, there have been a lot of dead-ends in business in the past:

  • we haven’t been able to know how customers used our products. We’ve actually got a lot more information about the ones that failed, because of warrantee claims or complaints, than we have about the ones that worked well, because that information was impossible to gather.
  • data that could help workers do their work better has always come from top down, filtered by various levels of management and only delivered after the fact.
  • customers can’t get the full value of our products because they operate in isolation from each other, and often were slow to react to changing conditions.
  • assembly-line machinery has frequently been hard to optimize, because we really didn’t know how it was operating — until it broke down.
  • key parts of the operation, such as supply chain, manufacturing, and distribution, have been largely independent, without simultaneous access to each other’s status.

With the Internet of Things, by contrast, everything will be linked, and that will change everything:

  • we’ll get real-time data about how customers are using our products. Most radically, that data may even allow us, instead of selling products and then severing our ties to the customer as in the past, to instead lease them the products, with the pricing dependent on how they actually use the products and the value they obtain from them.
  • everyone in the company can (if your management practices allow!) have real-time access to data that will help them improve their decision making and daily operations (hmm: still looking for an example of this one: know any companies that are sharing data on a real-time basis??).
  • products will work together, with synergistic results (as with the Jawbone UP turning on the NEXT), with their operation automatically triggered and coordinated by services such as IFTTT.
  • the assembly line can be optimized because we’ll be able to “see” into massive equipment to learn how it is operating — or if it needs repairs in time to avoid catastrophic failure.
  • access to that same data may even be shared with your supply chain and distribution network — or even with customers (again, looking for a good example of that transformation).

There’s won’t be dead ends or one-way streets where information only flows one way. Instead, they’ll be replaced by loops (in fact, I thought loops might be an alternative theme): in many cases, data will be fed back through M2M systems so things can be optimized.

If that’s the case, we’ll be able to increase the use and value of tools such as systems dynamics software, that would help us model and act on these links and loops. Instead of massive oscillations where we’re forced to make sudden, major corrections when data finally becomes available, machinery will be largely self-regulating, based on continuous feedback. We’ll delight customers because products will be more dependable and we’ll be able to fine-tune them by adding features based on actual knowledge of how the products work.  Workers will be more efficient, and happier, because they’ll be empowered. We’ll tread lightly on the earth, because we’ll use only what we need, precisely when we need it.

By George, I think I’ve got it! I’m excited about this vision of the Internet of Things linking everything. What do you think?? Please let me know! 

Global Warming: The IoT Can Help Fill Some of the Gap Due to Government Inaction

I won’t dwell on politics here, but  97% of scientists agree that global warming is real, and, according to the latest United National report this month, it is worse than ever (according to the NYTimes,

“The gathering risks of climate change are so profound that they could stall or even reverse generations of progress against poverty and hunger if greenhouse emissions continue at a runaway pace, according to a major new United Nations report.”). (my emphasis)

Thus, it should be noted that the chances of significant government action to curb global warming during the next two years have vanished now that Senator James Inhofe will chair the the Senate Environmental Committee (I won’t repeat any of the clap-trap he has said to deny global warming: look it up…).

While probably not enough to combat such a serious challenge, the Internet of Things will help fill the gap, by helping bring about an era of unprecedented precision in use of energy and materials.

Most important, the IoT is a critical component in “smart grid” electrical strategies, which are critical to reducing CO2 emissions.

According to the Environmental Defense Fund, “Because a smart grid can adjust demand to match intermittent wind and solar supplies, it will enable the United States to rely far more heavily on clean, renewable, home-grown energy: cutting foreign oil imports, mitigating the environmental damage done by domestic oil drilling and coal mining, and reducing harmful air pollution. A smart grid will also facilitate the switch to clean electric vehicles, making it possible to “smart charge” them at night when wind power is abundant and cheap, cutting another huge source of damaging air pollution.”

And then there’s generating electricity from conventional resources: GE, as part of its “industrial internet” IoT strategy, says that it will be able to increase its gas turbines’ operating efficiency (which it says generate 25% of the world’s electricity) by at least 1%.

Equally important, as I’ve written before, “precision manufacturing” through the IoT will also reduce not only use of materials, but also energy consumption in manufacturing.

In other important areas, the IoT can also help reduce global warming:

  • Agriculture: conventional farming is also a major contributor to global warming. “Climate-smart” agriculture, by contrast, reduces the inputs, including energy, needed while maximizing yield (Freight Farms, which converts old intermodal shipping containers into self-contained “Leafy Green Machine” urban farming systems, is a great example!).
  • IoT-based schemes to cut traffic congestion.  As The Motley Fool (BTW, they’re big IoT fans of the IoT as a smart investment opportunity) documents, “1.9 billion gallons of fuel is consumed every year from drivers sitting in traffic. That’s 186 million tons of unnecessary CO2 emissions each year just in the U.S. “

The Motley Fool concludes that, combined, a wide range of IoT initiatives can reduce carbon emissions significantly while increasing the economy’s efficiency:

“A recent report by the Carbon War Room estimates that the incorporation of machine-to-machine communication in the energy, transportation, built environment (its fancy term for buildings), and agriculture sectors could reduce global greenhouse gas emissions by 9.1 gigatons of CO2 equivalent annually. That’s 18.2 trillion pounds, or equivalent to eliminating all of the United States’ and India’s total greenhouse gas emissions combined, and more than triple the reductions we can expect with an extremely ambitious alternative energy conversion program.

“Increased communication between everything — engines, appliances, generators, automobiles — allows for instant feedback for more efficient travel routes, optimized fertilizer and water consumption to reduce deforestation, real-time monitoring of electricity consumption and instant feedback to generators, and fully integrated heating, cooling, and lighting systems that can adjust for human occupancy.”

It always amuses me that self-styled political conservatives are frequently the ones who are least concerned with conserving resources. Perhaps the IoT, by making businesses more efficient, and therefore more profitable, may be able to bring political conservatives into the energy efficiency fold!