IoT Design Manifesto 1.0: great starting point for your IoT strategy & products!

Late in the process of writing my forthcoming IoT strategy book, The Future Is Smart, I happened on the “IoT Design Manifesto 1.0” site. I wish I’d found it earlier so I could have featured it more prominently in the book.

The reason is that the manifesto is the product (bear in mind that the original team of participants designed it to be dynamic and iterative, so it will doubtlessly change over time) of a collaborative process involving both product designers and IoT thought leaders such as the great Rob van Kranenburg. As I’ve written ad nauseam, I think of the IoT as inherently collaborative, since sharing data rather than hoarding it can lead to synergistic benefits, and collaborative approaches such as smart cities get their strength from an evolving mishmash of individual actions that gets progressively more valuable.

From the names, I suspect most of the Manifesto’s authors are European. That’s important, since Europeans seem to be more concerned, on the whole, about IoT privacy and security than their American counterparts, witness the EU-driven “privacy by design” concept, which makes privacy a priority from the beginning of the design process.

At any rate, I was impressed that the manifesto combines both philosophical and economic priorities, and does so in a way that should maximize the benefits and minimize the problems.

I’m going to take the liberty of including the entire manifesto, with my side comments:

  1. WE DON’T BELIEVE THE HYPE. We pledge to be skeptical of the cult of the new — just slapping the Internet onto a product isn’t the answer, Monetizing only through connectivity rarely guarantees sustainable commercial success.
    (Comment: this is like my “just because you can do it doesn’t mean you should” warning: if making a product “smart” doesn’t add real value, why do it?)*
  2. WE DESIGN USEFUL THINGS. Value comes from products that are purposeful. Our commitment is to design products that have a meaningful impact on people’s lives; IoT technologies are merely tools to enable that.
    (Comment: see number 1!)
  3. “WE AIM FOR THE WIN-WIN-WIN. A complex web of stakeholders is forming around IoT products: from users, to businesses, and everyone in between. We design so that there is a win for everybody in this elaborate exchange.
    (Comment:This is a big one in my mind, and relates to my IoT Essential Truth #2 — share data, don’t hoard it — when you share IoT data, even with competitors in some cases [think of IFTTT “recipes”] — you can create services that benefit customers, companies, and even the greater good, such as reducing global warming).
  4. WE KEEP EVERYONE AND EVERYTHING SECURE. With connectivity comes the potential for external security threats executed through the product itself, which comes with serious consequences. We are committed to protecting our users from these dangers, whatever they may be.
    (Comment: Amen! as I’ve written ad nauseum, protecting privacy and security must be THE highest IoT priority — see next post below!).
  5. WE BUILD AND PROMOTE A CULTURE OF PRIVACY. Equally severe threats can also come from within. Trust is violated when personal  information gathered by the product is handled carelessly. We build and promote a culture of integrity where the norm is to handle data with care.
    (Comment:See 4!).
  6. WE ARE DELIBERATE ABOUT WHAT DATA WE COLLECT. This is not the business of hoarding data; we only collect data that serves the utility of the product and service. Therefore, identifying what those data points are must be conscientious and deliberate.
    (Comment: this is a delicate issue, because you may find data that wasn’t originally valuable becomes so as new correlations and links are established. However, just collecting data willy-nilly and depositing it in an unstructured “data lake” for possible use later is asking for trouble if your security is breeched.).
  7. WE MAKE THE PARTIES ASSOCIATED WITH AN IOT PRODUCT EXPLICIT. IoT products are uniquely connected, making the flow of information among stakeholders open and fluid. This results in a complex, ambiguous, and invisible network. Our responsibility is to make the dynamics among those parties more visible and understandable to everyone.
    (Comment: see what I wrote in the last post, where I recommended companies spell out their privacy and usage policies in plain language and completely).
  8. WE EMPOWER USERS TO BE THE MASTERS OF THEIR OWN DOMAIN. Users often do not have control over their role within the network of stakeholders surrounding an IoT product. We believe that users should be empowered to set the boundaries of how their data is accessed and how they are engaged with via the product.
    (Comment: consistent with prior points, make sure that any permissions are explicit and  opt-in rather than opt-out to protect users — and yourself (rather avoid lawsuits? Thought so…)
  9. WE DESIGN THINGS FOR THEIR LIFETIME. Currently physical products and digital services tend to be built to have different lifespans. In an IoT product features are codependent, so lifespans need to be aligned. We design products and their services to be bound as a single, durable entity.
    (Comment: consistent with the emerging circular economy concept, this can be a win-win-win for you, your customer and the environment. Products that don’t become obsolete quickly but can be upgraded either by hardware or software will delight customers and build their loyalty [remember that if you continue to meet their needs and desires, there’s less incentive for customers to check out competitors and possibly be wooed away!). Products that you enhance over time and particularly those you market as services instead of sell will also stay out of landfills and reduce your pduction costs.
  10. IN THE END, WE ARE HUMAN BEINGS. Design is an impactful act. With our work, we have the power to affect relationships between people and technology, as well as among people.  We don’t use this influence to only make profits or create robot overlords; instead, it is our responsibility to use design to help people, communities, and societies  thrive.
    Comment: yea designers!!)

I’ve personally signed onto the Manifesto, and do hope to contribute in the future (would like something explicit about the environment in it, but who knows) and urge you to do the same. More important, why start from scratch to come up with your own product design guidelines, when you can capitalize on the hard work that’s gone into the Manifesto as a starting point and modify it for your own unique needs?

*BTW: I was contemptuous of the first IoT electric toothbrush I wrote about, but since talked to a leader in the field who convinced me that it could actually revolutionize the practice of dentistry for the better by providing objective proof that  patient had brushed frequently and correctly. My bad!

“The House That Spied on Me”: Finally Objective Info on IoT Privacy (or Lack Thereof)

Posted on 25th February 2018 in data, Essential Truths, Internet of Things, privacy, security, smart home

Pardon a political analogy, Just as the recent indictment of 13 Russians in the horrific bot campaign to undermine our democracy (you may surmise my position on this! The WIRED article about it is a must read!) finally provided objective information on the plot, so too Kasmir Hill’s and Surya Matu’s excruciatingly detailed “The House That Spied on Me”  finally provides objective information on the critical question of how much personal data IoT device manufacturers are actually compiling from our smart home devices.

This is critical, because we’ve previously had to rely on anecdotal evidence such as the Houston baby-cam scandal, and that’s not adequate for sound government policy making and/or advice to other companies on how to handle the privacy/security issue.

Last year, Hill (who wrote one of the first articles on the danger when she was at Forbes) added just about every smart home you can imagine to her apartment (I won’t repeat the list: I blush easily…) . Then her colleague, Matu, monitored the outflow of the devices using a special router he created to which she connected all the devices:

“… I am basically Kashmir’s sentient home. Kashmir wanted to know what it would be like to live in a smart home and I wanted to find out what the digital emissions from that home would reveal about her. Cybersecurity wasn’t my focus. … Privacy was. What could I tell about the patterns of her and her family’s life by passively gathering the data trails from her belongings? How often were the devices talking? Could I tell what the people inside were doing on an hourly basis based on what I saw?”

The answer was: a lot (I couldn’t paste the chart recording the numbers here, so check the article for the full report)!

As Matu pointed out, with the device he had access to precisely the data about Hill’s apartment that Comcast could collect and sell because of a 2017 law allowing ISPs to sell customers’ internet usage data without their consent — including the smart device data.  The various devices sent data constantly — sometimes even when they weren’t being used! In fact, there hasn’t been a single hour since the router was installed in December when at least some devices haven’t sent data — even if no one was at home!

BTW: Hill, despite her expertise and manufacturers’ claims of ease-of-setup, found configuring all of the devices, and especially making them work together, was a nightmare. Among other tidbits about how difficult it was: she had to download 14 different apps!  The system also directly violated her privacy, uploading a video of her walking around the apartment nude that was recorded by the Withings Home Wi-Fi Security (ahem…) Camera with Air Quality Sensors. Fortunately the offending video was encrypted. Small comfort.

Hill came to realize how convoluted privacy and security can become with a smart home:

“The whole episode reinforced something that was already bothering me: Getting a smart home means that everyone who lives or comes inside it is part of your personal panopticon, something which may not be obvious to them because they don’t expect everyday objects to have spying abilities. One of the gadgets—the Eight Sleep Tracker—seemed aware of this, and as a privacy-protective gesture, required the email address of the person I sleep with to request his permission to show me sleep reports from his side of the bed. But it’s weird to tell a gadget who you are having sex with as a way to protect privacy, especially when that gadget is monitoring the noise levels in your bedroom.”

Matu reminds us that, even though most of the data was encrypted, even the most basic digital exhaust can give trained experts valuable clues that may build digital profiles of us, whether to attract us to ads or for more nefarious purposes:

“It turns out that how we interact with our computers and smartphones is very valuable information, both to intelligence agencies and the advertising industry. What websites do I visit? How long do I actually spend reading an article? How long do I spend on Instagram? What do I use maps for? The data packets that help answer these questions are the basic unit of the data economy, and many more of them will be sent by people living in a smart home.”

Given the concerns about whether Amazon, Google, and Apple are constantly monitoring you through your smart speaker (remember when an Echo was subpoenaed  in a murder case?), Matu reported that:

“… the Echo and Echo Dot … were in constant communication with Amazon’s servers, sending a request every couple of minutes to Even without the “Alexa” wake word, and even when the microphone is turned off, the Echo is frequently checking in with Amazon, confirming it is online and looking for updates. Amazon did not respond to an inquiry about why the Echo talks to Amazon’s servers so much more frequently than other connected devices.”

Even the seemingly most insignificant data can be important:

“I was able to pick up a bunch of insights into the Hill household—what time they wake up, when they turn their lights on and off, when their child wakes up and falls asleep—but the weirdest one for me personally was knowing when Kashmir brushes her teeth. Her Philips Sonicare Connected toothbrush notifies the app when it’s being used, sending a distinctive digital fingerprint to the router. While not necessarily the most sensitive information, it made me imagine the next iteration of insurance incentives: Use a smart toothbrush and get dental insurance at a discount!”

Lest you laugh at that, a dean at the BU Dental School told me much the same thing: that the digital evidence from a Colgate smart brush, in this case, could actually revolutionize dentistry, not only letting your dentist how well, or not, you brushed, but perhaps lowering your dental insurance premium or affecting the amount your dentist was reimbursed. Who woulda thunk it?

Summing up (there’s a lot of additional important info in the story, especially about the perfidious Visio Smart TV, that had such a company-weighted privacy policy that the FTC actually forced it to turn it off the “feature” and pay reparations, so do read the whole article), Hill concluded:

“I thought the house would take care of me but instead everything in it now had the power to ask me to do things. Ultimately, I’m not going to warn you against making everything in your home smart because of the privacy risks, although there are quite a few. I’m going to warn you against a smart home because living in it is annoying as hell.”

In addition to making privacy and security a priority, there is another simple and essential step smart home (and Quantified Self) device companies must take.

When you open the box for the first time, the first thing you should see must be a prominently displayed privacy and security policy, written in plain (and I mean really plain) English, and printed in large, bold type. It should make it clear that any data sharing is opt-in, and that you have the right to not agree, and emphasize the need for detailed, unique passwords (no,1-2-3-4 or the ever-popular “password” are not enough.

Just to make certain the point is made, it needs to be at the very beginning of the set-up app as well. Yes, you should also include the detailed legalese in agate type, but the critical points must be made in the basic statement, which needs to be reviewed not just by the lawyers, but also a panel of laypeople, who must also carry out the steps to make sure they’re really easily understood and acted on. This is not just a suggestion. You absolutely must do it or you risk major penalties and public fury. 

Clearly, this article gives us the first objective evidence that there’s a lot more to do to assure privacy and security for smart homes (and that there’s also a heck of a lot of room for improvement on how the devices play together!), reaffirming my judgement that the first IoT Essential Truth remains “make privacy and security your highest priority.” If this doesn’t get the focus it deserves, we may lose all the benefits of the IoT because of legitimate public and corporate concern that their secrets are at risk. N.B.!

Apple Watch 85% Accuracy in Detecting Diabetes May Be Precursor of Early Diagnoses

Permit me to (re-)introduce myself, LOL.

I haven’t posted since the end of October, because I was totally absorbed in writing The Future is Smart, my book about IoT strategy, which will be released in August by AMACOM, the publishing wing of the American Management Association. A major theme of the book is that the IoT lifts what I term the condition of  “Collective Blindness” that used to plague us before the advent of real-time data from sensors and the analytical software to interpret that data. Collective Blindness meant that we were frequently operating in figurative darkness, having to guess about how things worked or didn’t without direct observational data, which meant that we frequently didn’t learn about problems inside things until after the fact, which could mean costly (and sometimes fatal) corrective maintenance was all that was possible.

Those “things” unfortunately included the human body.

Usually the only way to uncover a problem inside our bodies pre-IoT was through costly pre-arranged tests at the doctor’s or a hospital. They could only provide a snapshot in time, documenting your body’s state at that precise moment (when, after all, you might be flat on your back wearing a johnny — not exactly representative of your actual condition as you go about your daily routine!). If you had no complaint warranting such a test, the condition might go undiagnosed until it was significantly worse (remember the contrast between prompt predictive maintenance of a jet turbine and costly emergency repairs when a disaster loomed?).

That’s why the news from Brandon Ballinger, the Google alum who was co-founder of the Cardiogram app (get it! I did! and I joined their Artificial Intelligence-driven Health eHeart Study as well!) is so important. In a clinical study released last week, the research team found that the Apple Watch is 85% accurate in detecting diabetes in those previously diagnosed with the disease. The paper was presented at the AAAI Conference on Artificial Intelligence last week in New Orleans.

Results from heart monitoring with Apple Watch and Cardiogram app

The study analyzed data from 14,000 Apple Watch users, finding that 462 participants through the heart rate sensor, the same type of sensor.

The investigation tested a 2015 finding by our famous local Framingham Heart Study that resting heart rate and heart rate variability significantly predicted incident diabetes and hypertension.

According to TechCrunch,  Ballinger’s team had previously used the Watch “to detect an abnormal heart rhythm with up to a 97 percent accuracy, sleep apnea with a 90 percent accuracy and hypertension with an 82 percent accuracy when paired with Cardiogram’s AI-based algorithm.”

This is important for several reasons.

We’ve read for several years about single-purpose devices that might be able to diagnose diabetes and determine the need for insulin without painful pinpricks, but the Cardiograph research might show that simply harvesting enough data with a multi-purpose fitness device such as the Watch and being able to interpret it creatively with Artificial Intelligence would be enough. That’s the logical next step with the Health eHeart Study.

It reminds me of the example I’ve mentioned several times before of neonatologists from Toronto’s Hospital for Sick Children and IBM data scientists combining to analyze the huge amount of sensor data harvested from preemies’ bassinettes and being able to diagnose a potentially-lethal neonatal sepsis infection a full day before any visible sign of the infection.

Given these two examples, one must ask, how many other health problems might be diagnosed in their earliest stages, which cures are most likely and least expensive, if routine monitoring through devices such as the Apple Watch become commonplace and the results are crunched with AI? In particular, this could be a key part of my SmartAging concept.



NB: I work part-time for The Apple Store, but am not privy to any strategy or inside information. These opinions are purely my own as an Apple Watch user.">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management