More Blockchain Synergies With IoT: Supply Chain Optimization

The more I learn about blockchain’s possible uses — this time for supply chains — the more convinced I am that it is absolutely essential to full development of the IoT’s potential.

I recently raved about blockchain’s potential to perhaps solve the IoT’s growing security and privacy challenges. Since then, I’ve discovered that it can also further streamline and optimize the supply chain, another step toward the precision that I think is such a hallmark of the IoT.

As I’ve written before, the ability to instantly share (something we could never do before) real-time data about your assembly line’s status, inventories, etc. with your supply chain can lead to unprecdented integration of the supply chain and factory, much of it on a M2M basis without any human intervention. It seems to me that the blockchain can be the perfect mechanism to bring about this synchronization.

A brief reminder that, paradoxically, it’s because blockchain entries (blocks) are shared, and distributed (vs. centralized) that it’s secure without using a trusted intermediary such as a bank, because no one participant can change an entry after it’s posted.

Complementing the IBM video I included in my last post on the subject, here’s one that I think succinctly summarizes blockchain’s benefits:

A recent LoadDelivered article detailed a number of the benefits from building your supply chain around blockchain. They paralleling the ones I mentioned in my prior post regarding its security benefits, of using blockchain to organize your supply chain (with some great links for more details):

  • “Recording the quantity and transfer of assets – like pallets, trailers, containers, etc. – as they move between supply chain nodes (Talking Logistics)
  • Tracking purchase orders, change orders, receipts, shipment notifications, or other trade-related documents
  • Assigning or verifying certifications or certain properties of physical products; for example determining if a food product is organic or fair trade (Provenance)
  • Linking physical goods to serial numbers, bar codes, digital tags like RFID, etc.
  • Sharing information about manufacturing process, assembly, delivery, and maintenance of products with suppliers and vendors.”

That kind of information, derived from real-time IoT sensor data, should be irresistible to companies compared to the relative inefficiency of today’s supply chain.

The article goes on to list a variety of benefits:

  • “Enhanced Transparency. Documenting a product’s journey across the supply chain reveals its true origin and touchpoints, which increases trust and helps eliminate the bias found in today’s opaque supply chains. Manufacturers can also reduce recalls by sharing logs with OEMs and regulators (Talking Logistics).
  • Greater Scalability. Virtually any number of participants, accessing from any number of touchpoints, is possible (Forbes).
  • Better Security. A shared, indelible ledger with codified rules could potentially eliminate the audits required by internal systems and processes (Spend Matters).
  • Increased Innovation. Opportunities abound to create new, specialized uses for the technology as a result of the decentralized architecture.”

Note that it the advantages aren’t all hard numbers, but also allowing marketing innovations, similar to the way the IoT allows companies to begin marketing their products as services because of real-time data from the products in the field. In the case of applying it to the supply chain (food products, for example), manufacturers could get a marketing advantage because they could offer objective, tamper-proof documentation of the product’s organic or non-GMO origins. Who would have thought that technology whose primary goal is increasing operating efficiency could have these other, creative benefits as well?

Applying  blockchain to the supply chain is getting serious attention, including a pilot program in the Port of Rotterdam, Europe’s largest.  IBM, Intel, Cisco and Accenture are among the blue-chip members of Hyperledger, a new open source Linux Foundation collaboration to further develop blockchain. Again, it’s the open source, decentralized aspect of blockchain that makes it so effective.

Logistics expert Adrian Gonzalez is perhaps the most bullish on blockchain’s potential to revolutionize supply chains:

“the peer-to-peer, decentralized architecture of blockchain has the potential to trigger a new wave of innovation in how supply chain applications are developed, deployed, and used….(becoming) the new operating system for Supply Chain Operating Networks

It’s also another reminder of the paradoxical wisdom of one of my IoT “Essential Truths,” that we must learn to ask “who else could share this information” rather than hoarding it as in the past. It is the very fact that blockchain data is shared that means it can’t be tampered with by a single actor.

What particularly intrigues me about widespread use of blockchain at the heart of companies’ operations and fueled by real-time data from IoT sensors and other devices is that it would ensure that privacy and security, which I otherwise fear would always be an afterthought, would instead be inextricably linked with achieving efficiency gains. That would make companies eager to embrace the blockchain, assuring their attention to privacy and security as part of the deal. That would be a definite win-win.

Blockchain must definitely be on your radar in 2017.

 

Lo and behold, right after I posted this, news that WalMart, the logistics savants, are testing blockchain for supply chain management!

 

Siemens’s MindSphere: from automation to digitalization

Perhaps the most important component of a successful IoT transformation is building it on a robust platform, because that alone can let your company go beyond random IoT experiments to achieve an integrated IoT strategy that can add new components systematically and create synergistic benefits by combining the various aspects of the program.

A good starting point for discussion of such platforms is a description of the eight key platform components as detailed by IoT Analytics:

  1. “Connectivity & normalization: brings different protocols and different data formats into one ‘software’  interface ensuring accurate data streaming and interaction with all devices.
  2. Device management: ensures the connected ‘things’ are working properly, seamlessly running patches and updates for software and applications running on the device or edge gateways.
  3. Database: scalable storage of device data brings the requirements for hybrid cloud-based databases to a new level in terms of data volume, variety, velocity and veracity.
  4. Processing & action management: brings data to life with rule-based event-action-triggers enabling execution of ‘smart’ actions based on specific sensor data.
  5. Analytics: performs a range of complex analysis from basic data clustering and deep machine learning to predictive analytics extracting the most value out of the IoT data-stream.
  6. Visualization: enables humans to see patterns and observe trends from visualization dashboards where data is vividly portrayed through line-, stacked-, or pie charts, 2D- or even 3D-models.
  7. Additional tools: allow IoT developers prototype, test and market the IoT use case creating platform ecosystem apps for visualizing, managing and controlling connected devices.
  8. External interfaces: integrate with 3rd-party systems and the rest of the wider IT-ecosystem via built-in application programming interfaces (API), software development kits (SDK), and gateways.”

Despite (or because of, the complexity,) I think this is a decent description, because a robust IoT platf0rm really must encompass so many functions. The eight points give a basis for deciding whether what a company hawks as an IoT platform really deserves that title or really constitutes only part of the necessary whole (Aside: it’s also a great illustration of my Essential Truth that, instead of hoarding data as in the past, we must begin to ask “who else can use this data?” either inside the company or, potentially, outside, then use technology such as an IoT platform to integrate all those data uses productively.).

During my recent Barcelona trip (disclaimer: Siemens paid my way and arranged special access to some of its key decision makers, but made no attempt to limit my editorial judgment) I interviewed the company’s Chief Strategy Officer, Dr. Horst J. Kayser, who made it clear (as I mentioned in my earlier post about Siemens) that one of the advantages the company has over pure-play software firms is that it can apply its software offerings internally first and tweak them there, because of its 169-year heritage as a manufacturer, and “sits on a vast program of automation.”

Siemens’s IoT platform, MindSphere  is a collaboration with SAP, using the latter’s vast HANA cloud.  It ties together all components of Siemens’s IoT offerings, including data analytics, connectivity capabilities, developers’ tools, applications and services. MindSphere focuses on monitoring manufacturing assets’ real-time status, to evaluate and use customers’ data, producing insights that can cut production costs, improve performance, and even switch to predictive maintenance. Its Mind Connect Nano collects data from the assets and transferring it to MindSphere.

The “digital twin” is integrated throughout the MindSphere platform. Kayser says that “there’s a digital twin of the entire process, from conception through the manufacturing and maintenance, and it feeds the data back into the model.” In fact,  one dramatic example of the concept in action is the new Maserati Ghibli, created in 16 months instead of 30 — almost 50% less time than for prior models.  Using the Teamcenter PLM software, the team was able to virtually develop and extensively test the car before anything was created physically.

IMHO, Mindsphere and components such as Teamware might really be the key to actualizing my dream of the circular company, in this case with the IoT-based real-time digital twin at the heart of the enterprise — as Kayser said, “everything is done through one consistent data set.)” I hope to explore my concept, and the benefits I think it can produce, more with the Siemens strategists in the future!  I tried the idea out on several of them in Barcelona, and no one laughed, so we’ll see…

As with the company’s rail digitization services that I mentioned in my earlier post, there’s an in-house guinea pig for MindSphere as well: the company’s “Factory of the Future” in Amberg. The plant manufactures Simatic controllers, the key to the company’s automation products and services, to which digitalization is now being added as part of the company’s Industrie 4.0 IoT plan for manufacturing (paralleling GE’s “Industrial Internet.”). As you may be aware, Siemens’s efforts in this area are a subset of a formal German government/industry initiative — I  doubt seriously we’ll see this in the U.S. under Trump.

The results of digitalization at Amberg are astonishing by any measure, especially the ultimate accomplishment: a  99.9988 percent rate (no typo!!), which is even more incredible when you realize this is not mass production with long, uniform production runs: the plant manufactures more than 1,000 varieties of the controllers, with a total volume of 12 million Simatic products each year, or about one per second.  Here are some of the other benefits of what they call an emphasis on optimizing the entire value chain:

  • shorter delivery time: 24 hours from order.
  • time to market reduced by up to 50%.
  • cost savings of up to 25%

Of course there are several other robust IoT platforms, including GE’s Predix and PTC’s Thingworx, but my analysis shows that Mindsphere meets IoT Analytics’ criteria, and, combined with the company’s long background in manufacturing and automation, should make it a real player in the industrial internet. Bravo!

High-speed 3D Printer & IoT Could Really Revolutionize Design & Manufacturing

There’s a new high-speed 3D printer on the horizon which, coupled with the IoT, could really revolutionize product design and manufacturing.

I’ve raved in the past about 3D printing’s revolutionary potential, but I’ll admit I was still thinking primarily in terms of rapid prototyping and one-off repair parts.  Now, according to Bloomberg, HP is going to transfer its ink-jet printer expertise to the 3D printer field, with a $130,000 model set for release later this year that, for the first time, could make 3D printing practical and affordable for large-scale manufacturing, with “parts at half the expense and at least 10 times faster than rival printers — and likely [using] lower-cost materials.”

Combined with the IoT, that would go a long way toward making my “precision manufacturing” vision a reality, with benefits including less waste, streamlined products (a single part replacing multiple ones that previously had to be combined into the final configuration),  factories that are less reliant on outside parts and encouraging mass customization of products that would delight customers. 

Customers are already lining up, and see manufacturing-scale 3D printing as a game-changer:

Jabil Circuit Inc. [itself a digital supply-chain innovator] plans to be an early adopter of HP’s device, printing end plastic parts for aerospace, auto and industrial applications that it currently makes using processes such as injection molding, John Dulchinos, vice president of digital manufacturing at the electronics-manufacturing service provider, said in an interview.

“‘We have use cases in each of these segments,’ Dulchinos said. ‘Parts that are in hundreds or thousands or tens of thousands of units — it’s cheaper to 3D print them than mold them.’”

Other HP partners in the venture include BMW, Nike, and and Johnson & Johnson. The article cites research by Wohlers Associates predicting that manufacturing using 3D printers could “eventually grab at least 5 percent of the worldwide manufacturing economy, and translate into $640 billion in annual sales.”

3D Systems is also making the transition to large-scale 3D printing.

As I’ve written before in regard to GE’s leadership in the field, toss in some nanotech on the side, and you’ve really got something.

 

Brexit and the IoT: Let’s Capitalize on the Opportunity, Not Wallow in Despair

Wow: as the old Dinah Washington ditty went, “What a Difference a Day Makes.” Since last Thursday, I doubt even the most diehard IoT zealots have thought about anything but Brexit and its implications.  Now that we’ve had a little time to reflect and digest exactly how dire the possible problems are, I’d like to suggest we look at the bright side, and think the IoT could play a major role in improving everyone’s life in the future — not just the economic elites.

Wei ji: crisis combines danger and opportunity

Wei ji: crisis combines danger and opportunity

I used to be a corporate crisis manager, called in when major corporations had done amazingly stupid things and their reputations and sometimes even their survival was in question. For those occasions, I kept a battered greeting card in my briefcase with the calligraphy for wei ji, the Chinese ideogram for crisis. I’d point out that it c0mbined danger — that was obvious! — with the less-obvious one for opportunity. I still believe that, even in the global confusion and concern resulting from Brexit, and I think there’s a role for the IoT in the new world order.

Above all, this should be a wake-up call for the global economic and political elites that, going forth, change must benefit everyone, not just them.

When it comes to the IoT, that means that it can’t be yet another excuse for automating jobs out of existence, but must instead be a way of empowering workers and creating new opportunities:

  • One that occurred to me is near & dear to my heart, because I thought of a primitive version 25 years ago: creating 30″ high 4′ x 8′ garden “boxes” planted using Mel Bartholomew’s “Square Foot Gardening” methods, that would allow people worldwide to grow their own veggies in very small spaces.  Add in IoT water sensors so that the beds could be watered precisely when and in the amount needed, and people everywhere could become self-sufficient (e-mail me if you’re interested in commercializing the approach)!  It would be the cheapie’s variation on the neat, but costly, Grove Labs home ag solution.
  • smart asthma inhaler

    smart asthma inhaler

    Increasingly, global populations will be centered in cities, so the whole smart cities approach will improve everyone’s quality of living by cutting down traffic, reducing municipal operating costs, and improving public health. Even fat cats get upset when their limos are stuck in traffic, so this is a win-win.
    One of my favorite examples of the smart city approach is the asthma inhaler cum GPS that automatically alerts public health authorities when a user — most frequently, sadly, a low-come minority person — uses the inhaler, allowing them to identify dirty air “hot spots” where cleanup efforts need to be focused.

  • I’ve always been impressed about the outside-the-box mobile device apps coming out of Africa that make their lack of conventional infrastructure into an advantage. One of the coolest examples of that when it comes to the IoT is the example INEX’s Chris Rezendes told me about: how Grundfos, the world’s leading pump company, releases the data from senors on its pumps for village water supplies in Africa and some smart guys have come up with an app that allows the village women to check in advance whether the village well is working before they trudge miles to get the watch (which, BTW, I hope they’re carrying back in these way-cool appropriate technology rolling water carriers, the “Hippo”).

  • Also, the IoT could empower assembly-line workers and others if smart managers realize that they too should be among those sharing real-time IoT data: yes, a lot of IoT data can be used on a M2M basis so one machine’s status will regulate another’s, but there’s also a potential role for workers, with their years of experience and horse-sense, using that data to fine-tune processes themselves to optimize efficiency. Artificial Intelligence is great, but I still think there’s a role for enlightened humans, even if they don’t have a lot of education and prestige within the corporation.

Those are just a few ideas on how the IoT might be used to improve everyone’s lot in the coming years and undermine the current status quo that benefits only a few.  Let me know if you have ideas on how to foster this revolution and make Brexit the catalyst for positive change.

 

 

Liveblogging #IoT @ #Liveworx 2016

1st up is Jim Heppelmann, PTC CEO and co-author w/ Michael Porter of the great 2-part HBR series on IoT strategy & tactics.

But 1st, few words from David Pogue, the great consumer tech writer: imagine his surprise when he sees his kids at home in CT have cranked the Nest 2 66 degrees. So he turns it up, LOL.

Heppelmann:

  • part of a fundamental transformation
  • one of biggest game-changing technologies of our time
  • things evolving from being simple physical products to complex systems, systems of systems
  • “single new reality that’s physical and digital at the same time”
  • example of rapid change: Augmented Reality & Virtuality combined with IoT: Terri Lewis, director of solutions & tech at Caterpiller — XQ Gen Set — rental power for job sites & sport events — “asset utilization” big deal for rentals & for the customers — can operate from a remote device (iPad in this case). PTC’s new product is Vuforia Studio Enterprise — “democratizing AR.” When used as a sales tool, lets customer look inside the product, vs. a static brochure.
  • humans prefer to use sight and sound simultaneously: he & Porter are working on another article on adding AR to business setting.
  • analytics: analytics is the new refinery for data, which is the new oil.  Announcing Thingworx Analytics. Example: Flowserve, an industrial products company.World’s largest flow control company. Helps to do real-time management of the device. It now takes only 1 repair trip to fix assembly rather than 3 before, because they know the actual problem at beginning. Do real-time simulations to see if it was solved.  Augmented Reality allows the person right at the pump, to see what is actually happening — that wasn’t possible before. Radically reduces time & money necessary to get it back online — reducing what was a $2 billion loss in 2015 alone.
  • New announcement: HPE industrial, hardened server to run such a system.
  • Engineering products: working with a group of local STEM kids in a robotics competition, FIRST Robotics. Use AR as part of the design review process, using Google Cardboard & Agile Engineering process. Team demo’s it.
  • He thinks they are THE company for digital/physical convergence.

Michael Campbell, Vuforia Studio AR:

  • augmented reality without writing code
  • reduces the CAD data set by 150x to optimize it, but protects all the visual richness
  • use in design review
  • can create compelling AR in a few minutes! Woo!
  • can actually put the digital info on the physical product itself.  Creo Illustrate for tech illustrators: step-by-step illustrations (wow, would that be great for product assembly and repair uses!). Intuitive interface, drag-n-drop.

 

Industry Week Survey: Most Manufacturers Don’t Get IoT

A new Industry Week survey shows that most manufacturers are, at best, just testing the IoT waters, and few have made the management changes necessary that show they understand the IoT’s revolutionary potential to change every aspect of their products, manufacturing, and even their management.

 The Internet of Things: Finding the Path to ValueThe survey, “The Internet of Things: Finding the Path to Value,” (underwritten by SAS) was conducted late last year.  478 companies completed it.  The survey’s major finding was that:

Despite the fact that they’re already collecting such (i.e., IoT) data, and two- thirds believe the Internet of Things technology will be critical to their future success, only one third of manufacturers report that they have a specific IoT technology strategy.” (my emphasis)

One finding was particularly damning, because it shows senior management really doesn’t get the full value of IoT data and how it must radically alter their decision making:

“… two out of three say they rely more on management experience [than the IoT] when addressing key business issues.”

On the other hand, 28% said they think they’re outpacing their competitors in use of the IoT. Pardon my skepticism..

Here’s the finding that clearly indicated to me that these executives don’t get it that the vast amounts of data yielded by the IoT requires new analytical tools (HANA and its ilk) and new skill sets (i.e., data scientists): ”

It should come as no surprise … that well over half (57%) of manufacturers report that they are using spreadsheets to analyze sensor data.” (my emphasis)

Really?? Those guys gotta download the Managing the Internet of Things Revolution e-guide I wrote for SAP, which explained that the way to ease your way into the IoT is to begin by acquiring data mining and visualization tools and beefing up your cloud storage, which will benefit you with your current operations, as well as building the data analysis skills such as predictive analytics — and attitudes — necessary to capitalize on the IoT.  If you’re analyzing sensor data with spreadsheets, your priorities are totally out of wack…

On the positive side, 45% are integrating and supplementing IoT data regarding product quality, and 43% integrating production data.

I see little indication from the findings that most companies (a few, such as GE and Siemens, excepted) are fully integrating the IoT into day-to-day operations, resulting in what I’ve called “precision manufacturing.”

Long way to go, folks, long way to go…

 

Live Blogging from SAP’s SCM CRM IoT 2016

I’m back in Sodom and Gomorrah in the desert, AKA Las Vegas, to speak at another SAP IoT conference: SCM CRM IoT 2016, and to live blog again!

Keynoters: Hans Thalbauer, sr. vp of extended supply chain solutions at SAP, and Dr. Volker G. Hildebrand, global vp or customer engagement & commerce for SAP Hybris:
Hildebrand:

  • theme: move beyond traditional CRM: look at entire customer journey
  • you have to meet customer expectations for convenience, relevance, reliability, and in real-time.
  • real lesson from Uber: customers upend markets, not companies; carry power of internet in their pocket; if you’re fighting alone, you have no chance of success;
  • when London cabbies went on strike, Uber membership went up 850% in 3 days.
  • “74% of execs. believe digital transformation is improving value for customers”
  • must thinking beyond CRM: 2 of 3 companies don’t think their CRM doesn’t support their future needs for customer engagement.
  • blend marketing & commerce.
  • personalization is key to digital commerce.
  • beyond service: customer served before, during & after buy; flawless field service. 53% abandon online purchase if they don’t be quick answers to questions.
  • why no app from cable provider allowing you to get assistance Uber-style? Instead, hold on phone.
  • One-to-one future is here.
  • Omnichannel selling
  • By 2020: 1 million fewer B2B sales reps (@Forrester)
  • EY: enabled collaboration with 15,000 client partners
  • “Engage your customers like never before:” commerce, marketing, service & sales.

Bob Porter, Pregis (protective packaging):

  • liked ease of use with Hybris (vs. Salesforce)

Thalbauer (digital transformation of supply chain):

  • end-consumer driven economy
  • very related to IoT
  • tech adoption accelerating
  • biz model transformation
  • instant notification if the equipment malfunctions
  • change of business transformation
  • disruption in every aspect of business:
    • customer-centric (demand sensing, omni-channel sales, same-day delivery)
    • individualized products (configured products, digitalized inventory, lot size of one)
    • resource scarcity (talent, sustainability, natural resources)
    • sharing economy (social networks, business networks, asset networks)
  • sweet: combo of 3-D printing at warehouse & Uber-based model for final delivery.
  • extended supply chain demo: sweet (literally): 3-D printing of chocolates at high-end stores! — wonderful example of IoT data-centric enterprise
  • SAP increasing pace of innovation
    • fastest-growing planning solution in history
    • only live logistics platform in the market
    • product innovation platform re-defined
    • demand-driven manufacturing
    • digital assets.

Next up: Sacha Westermann, Port of Hamburg, on how it uses IoT to streamline operations, improve efficiency & reduce accidents through “smartPORT”:

  • it’s very big (largest port in Germany), and very complex! Ships, rail (largest rail hub in Europe), trucking. 24/7.
  • big emphasis on environment: need to reduce emissions, improve sustainability.
  • can’t expand area, but must be able to handle more volume.
  • key factor is connectivity between all parties.
  • smartPORT includes energy & logistics.
  • smart maintenance: use mobile to call up SAP order & create messages, take photos. Example of malfunction with a drawbridge. Technician got new button from stock, installed it, customers didn’t even know there was a problem.
  • port monitor: digital map with all info to operate the harbor. Mobile version on iPad.
  • SmartSwitch for rail: sensors on the switches to measure conditions. Automated data flow to maintenance company.
  • dynamic info on traffic volumes: combines all real-time data on traffic. Detects available parking spaces. Created “PrePort Parking” as holding area for trucks that are early or late. Trucks park bumper-to-bumper for maximum efficiency.
  • special traffic lights: cycle changes based on real-time traffic flow. Warning messages if pedestrians cross.
  • smartROAD: smart sensing of the bridge-structural load — identifies interdependencies and to do predictive maintenance.
  • Take aways:
    • good application requires lot of data
    • must share data
    • data privacy critical for confidence
    • everyone gets just info they need
    • more participants, higher the benefit for each
    • open interfaces basic
    • application must be self-explanatory

Next up: me!, on 4 Essential Truths of IoT & how that translates into strategy.


 

Mike Lackey, IoT Extended Supply Chain, SAP explaining their IoT strategy & direction, with emphasis on “driving customer value”:

  • he’s using universe of 75 billion connected devices by 2022.
  • case study: STILL, the smart lift truck from Germany. Forklift sold as service, based on weight of materials carried. They will communicate among themselves, M2M.
  • “It is not about Things, it is about what the Things can do to radically transform business processes!”
  • oil & gas: reducing spills. They worked with the company that made the platform that failed in Deep Horizon — hadn’t been maintained in years.
  • Burbury: want to know exactly what you looked at, share the info among their stores. Creepy: invasion of privacy??
  • UnderArmour: why do you have to wear a band — build sensors right into clothes.
  • Hagleitner (I reported about them at last SAP event) provides supplies for corporate washrooms, etc. Paradigm shift: sensors let them know which dispensers need new materials. “big washroom data
  • applications: drive adoption with a few killer applications. Differentiate with “Thing to Outcome”
  • cloud: leading cloud experience for customers and partners at lowest TCO
  • platform: open big data platform. high-value services for SAP, customer & partner
  • Kaeser Compressors also made paradigm shift: no longer sell air compressors, but air — must guarantee it works constantly. Million data points per compressor daily. Differentiates them from competitors.
  • one tractor company now can recommend to farmers what they should plant based on data from sensors on the plows.
  • Asset Intelligence Network: great example of data sharing for mutual advantage. To be released soon.
  • Enables connected driving experience.
  • SAP IoT Starter Kit can get you started.

Data Is the Hub: How the IoT and Circular Economy Build Profits

Fasten your seatbelts! I think I’ve finally zeroed in on the Internet of Things’ (IoT’s) most important potential economic benefit and how it could simultaneously help us escape the growing global environmental crisis:

make real-time IoT data* the hub of a circular economy and management mentality. It’s both good for the bottom line and the planet.

I started writing about circular business models back in the 90’s, when I consulted on profitable environmental strategies, i.e., those that were good both for the corporate bottom line and the planet.  It galled me that executives who railed about eliminating inefficiency thought reducing waste was for tree-huggers. Semantics and lifestyle prejudices got in the way of good strategy.

Ford’s River Rouge Plant (1952 view)

I could see that it was vital that we get away from old, linear models that began with extracting resources and ended with abandoned products in landfills. Ford’s massive 1 x 1.6 mile River Rouge Plant, the world’s largest integrated factory, was the paradigm of this thinking: ore was deposited at one end, made into steel, and cars came out the other (Hank’s penchant for vertical integration even led him to buy rubber plantations! If you have any illusions about the ultimate impossibility of top-down control, watch the PBS documentary on Ford — he simply couldn’t share power, even with his own son — and it almost ruined the company). The linear model worked for a long time, and, truth to tell, it was probably the only one that was feasible in the era of paper-and-pencil information flow:  it was so hard to gather and transmit information that senior management controlled who got what information, and basically threw it over the transom to the next office.

As for any kind of real-time information about what was actually happening on the factory floor: fugetaboutit: all that was possible was for low-level functionaries to shuffle along the assembly line, taking scheduled readings from a few gauges and writing them on a clipboard. Who knew if anyone ever actually read the forms, let alone made adjustments to equipment based on the readings?

Fast forward to 2015, and everything’s changed!

The image of the circular corporation popped back into my head last week while I was searching for an image of how the IoT really can change every aspect of corporate operations, from product design to supply chain management.  I was happily surprised that when I Googled “circular economy” I found a large number of pieces, including ones from consulting gurus Accenture and McKinsey (the most comprehensive report on the concept is probably this one from the Ellen MacArthur Foundation), about the bottom-line and environmental benefits of switching from a linear (‘take-make-dispose’) pattern.

But how to make the circular economy really function? That’s where the IoT comes in, and, in my estimation, is THE crucial element.

Visualize everything a company does as a circle, with IoT-gathered real-time data as its hub. That’s crucial, because everything in a profitable circular company revolves around this data, shared in real time by all who need it.

When that happens, a number of crucial changes that were impossible in the era of linear operations and thinking and limited data became possible for the first time:

  • you can optimize assembly line efficiency because all components of the factory are monitored by sensors in real time, and one process can activate and regulate another, and/or managers and assembly-line workers can fine-tune processes (think of the 10,000 sensors on the GE Durathon battery assembly line).
  • you can integrate the assembly line with the supply chain and distribution and sales network as never before (provided that you share the real-time data with them), so materials are delivered on a just-in-time basis) and production is dictated by real-time data on sales (the SAP smart vending machine, integrated with logistics, is a great example).
  • you can optimize product redesign and upgrades and speed the process, because sensor data from the products as they are actually used in the field is immediately fed back to the designers, so they have objective evidence of what does, and doesn’t work properly (think of how GE has improved its product upgrade process). No more ignorance of how your products are actually used!
  • from an environmental standpoint, having sensors on key components can make it possible for you to recover and profitably remanufacture them (closing the loop) rather than having them landfilled (I was excited to learn that Caterpillar has been doing this for 40 years (!) through its Reman Program, which “reduces costs, waste, greenhouse gas emissions and need for raw inputs.”).
  • you can create new revenue streams, by substituting services for actual sales of products.  I’ve written before about how GE and RollsRoyce do this with jet engines, helping clients be more efficient by providing them with real-time data from jet turbines in return for new fees, and Deere does it with data feeds from its tractors. Now I learn that Phillips does this, with industrial lighting, retaining ownership of the lighting: the customers only pay for the actual use of the lights. Phillips also closes the loop by taking the lights back at the end of their life and/or upgrading them.

As I’ve written before, creating the real-time data is perhaps the easier part: what’s harder is the paradigm shift the circular economy requires, of managers learning to share real-time data with everyone inside the enterprise (and, preferably, with the supply chain, distribution network, retailers, and, yes, even customers). When that happens, we will have unprecedented corporate efficiency, new revenue streams, satisfied customers, and, equally important reduce our use of finite resources, cut pollution, and tread lightly on the earth.  There you have it: the secret to 21st-century profitability is:

real-time IoT data, at the hub of the circular enterprise.


*Oh yeah, please don’t drop a dime on me with the grammar police about the title: in fact, I’m a retired colonel in the Massachusetts Grammar Police, but I’ve given up the fight on “data.” From my Latin training, I know that data are the plural form of datum, but datum is used so infrequently now and data with a singular verb has become so common that I’ve given up the fight and use it as a singular noun.  You can see the issue debated ad nauseum here

The IoT Will Reinvent Replacement Parts Industry

Of all the Internet of Things’ revolutionary impacts on industry, perhaps none will be as dramatic as on replacement parts, where it will team with 3-D printing to reduce service time, inventory and costs.

I came to that realization circuitously, upon noticing Warren Buffett’s blockbuster purchase of Precision Castparts, the major precision parts supplier to the aeronautics industry.  Having read last year about yet another breakthrough innovation by Elon Musk, i.e., the first totally 3-D printed rocket engines, I was curious to see what Precision was doing in that area.  Unless my search of their website was flawed, the answer is zip, and that suggests to me that Buffett, who famously once said he doesn’t invest in technology because he doesn’t understand it, may have just bought …. a rather large dinosaur.

I noticed that one of Precision’s biggest customers is GE, which not only is using 3-D jet fuel nozzles on its engines but also ran a high-profile contest to design a 3-D printed engine mount that was open to you, me and the kids trying out the new 3-D printer at our little town’s library (note to Mr. Buffett: might be good to schedule a sit-down with Jeff Immelt before one of your biggest customers takes things in-house). As I’ve written before, not only is GE a world leader in the IoT and 3-D printing, but also in my third magic bullet, nanotech: put all three together, and you’re really talking revolution!

OK, I know 3-D printing is sloow (in its current state), so it’s unlikely to replace traditional assembly lines at places such as Precision Castparts for large volumes of parts, but that doesn’t mean it won’t rapidly replace them in the replacement parts area.  I talked to a friend several years ago whose biz consists of being a broker between power plants that need replacement parts yesterday and others with an excess on hand, and couldn’t help thinking his days were numbered, because it was predicated on obsolete technology — and thinking.

Think of how the combined strengths of the IoT and 3-D printing can help a wide range of industries get replacement parts when and where they need them, and at potentially lower cost:

  • sensors in IoT-enabled devices will give advance notice of issues such as metal fatigue, so that repairs can be done sooner (“predictive maintenance“), with less disruption to normal routine, cheaper and reducing the chance of catastrophic failure.
  • because data can be shared on a real-time by not only your entire workforce, but also your supply chain, you can automate ordering of replacement parts.
  • perhaps most important, instead of a supplier having to maintain a huge inventory of replacement parts on the possibility they may be needed, they can instead be produced only when needed, or at least with a limited inventory (such as replacing a part in inventory as one is ordered). This may lead to “re-shoring” of jobs, because you will no longer have to deal with a supplier on the other side of the globe: it might be in the next town, and the part could be delivered as soon as printed, saving both delay and money.
  • your company may have your own printer, and you will simply pay the OEM for the digital file to print a part in-house, rather than having to deal with shipping, etc.

And, as I mentioned in the  earlier post about GE’s leadership in this area, there are other benefits as well:

  • “We’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • “Products will increasingly be customized to the customer’s exact specifications. The products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.”

Sooo, Mr. Buffett, it’s time that you come to terms with 21-st century technology or Berkshire Hathaway’s financial slide may continue.

 

Intel’s IoT tech improves its own manufacturing efficiency

This demonstration IoT manufacturing project hits my buttons!

I love IoT-enabled manufacturing (what I call “precision manufacturing“) and I REALLY love companies (such as GE, at its Durathon battery plant) that eat their own dogfood by applying their IoT technology internally.  Gotta walk the talk!

 

That’s why I was happy to learn how Intel is  applied its own IoT technology to its own factories. In the accompanying video, Intel VP for IoT operations and group marketing Frank James says:

“The real opportunity is how to combine … data differently, which will ultimately give you insights not only into how your factory is running but, what’s more important, will let you predict how your factory will run the next minute, the next hour, the next shift, the next day.”

The pilot factory automation project is a collaboration with Mitsubishi Electric (more points for a key IoT “Essential Truth” — collaboration!).  The project, at Intel’s Malaysia manufacturing facility, combines two critical components, end-to-end IoT connectivity and big data analytics. The benefits were impressive: $9 million in cost avoidance and improved decision making, plus:

  • improved equipment uptime
  • increased yield and productivity
  • predictive maintenance
  • reduced component failures.

That hard-to-quantify improved decision making, BTW, is one of the things that doesn’t get enough discussion when we talk about IoT benefits: decision-making improves when there is more data to consider, more people to analyze and discuss it simultaneously (not sequentially, as in the past), and when you’ve got tools such as data dashboards to allow visualizing the data and its patterns.

The companies plan to roll out the services commercially this year.

Here are the specs:

“Using an Intel® Atom™ processor-based IoT gateway called the C Controller from Mitsubishi Electric’s iQ-Platform, Intel was able to securely gather and aggregate data for the analytics server. Data was then processed using Revolution R Enterprise* software from Revolution Analytics*, an analytics software solution that uses the open source R statistics language, which was hosted on Cloudera Enterprise*, the foundation of an enterprise data hub.”