IoT Intangibles: Increased Customer Loyalty

There are so many direct, quantifiable benefits of the IoT, such as increased quality (that 99.9988% quality rate at Siemens’s Amberg plant!) and precision, that we may forget there are also potential intangible benefits.

Most important of those is customer loyalty, brought about by dramatic shifts both in product designs and how they are marketed.

Much of this results from the IoT lifting the veil of Collective Blindness to which I’ve referred before: in particular, our prior inability to document how products were actually used once they left the loading dock. As I’ve speculated, that probably meant that manufacturers got deceptive information about how customers actually used products and their degree of satisfaction. The difficulty of getting feedback logically meant that those who most liked and most hated a product were over-represented: those who kinda liked it weren’t sufficiently motivated to take the extra steps to be heard.

Now, by contrast, product designers, marketers, and maintenance staffs can share (that critical verb from my Circular Company vision!) real-time data about how a product is actually operating in the field, often from a “digital twin” they can access right at their desks.

Why’s that important?

It can give them easy insights (especially if those different departments do access and discuss the data at the same time, each offering its own unique perspectives, on issues that will build customer loyalty:

  • what new features can we add that will keep them happy?
  • can we offer upgrades such as new operating software (such as the Tesla software that was automatically installed in every single car and avoided a recall) that will provide better customer experiences and keep the product fresh?
  • what possible maintenance problems can we spot in their earliest stages, so we can put “predictive maintenance” services into play at minimal cost and bother to the customer?

I got interested in this issue of product design and customer loyalty while consulting for IBM in the 9o’s, when it introduced the IBM PS 2E (for Energy & Environmental), a CES best-of-show winner in part because of its snap-together modular design. While today’s thin-profile-at-all-costs PC and laptop designs have made user-friendly upgrades a distant memory, one of the things that appealed to me about this design was the realization that if you could keep users satisfied that they were on top of  new developments by incremental substitution of new modules, they’d be more loyal and less likely to explore other providers.

In the same vein, as GE has found, the rapid feedback can dramatically speed upgrades and new features. That’s important for loyalty: if you maintain a continuing interaction with the customer and anticipate their demands for new features, they’ll have less reason to go on the open market and evaluate all of your competitors’ products when they do want to move up.

 

Equally important for customer loyalty is the new marketing options that the continuous flow of real-time operating data offer you. For a growing number of companies, that means they’re no longer selling products, but leasing them, with the price based on actual customer usage: if it ain’t bein’ used, it ain’t costing them anything and it ain’t bringing you any revenue!

Examples include:

  • jet turbines which, because of the real-time data flow, can be marketed on the basis of thrust generated: if it’s sitting on the ground, the leasee doesn’t pay.  The same real-time data flow allows the manufacturer to schedule predictive maintenance at the earliest sign of a problem, reducing both its cost and the impact on the customer.
  • Siemens’s Mobility Services, which add in features such as 3-D manufactured spare parts that speed maintenance and reduced costs, keeping the trains running.
  • Philips’s lighting services, which are billed on the basis of use, not sold.
  • SAP’s prototype smart vending machine, which (if you opt in) may offer you a special discount based on your past purchasing habits.

At its most extreme is Caterpillar’s Reman process, where the company takes back and remanufactures old products, giving them a new life — and creating new revenues — when competitors’ products are in the landfill.

Loyalty can also be a benefit of IoT strategies for manufacturers’ own operations as well. Remember that the technological obstacles to instant sharing of real-time data have been eliminted for the supply chain as well. If you choose to share it, your resupply programs can also be automatically triggered on a M2M basis, giving an inherent advantage to the domestic supplier who can get the needed part there in a few hours, versua the low-cost supplier abroad who may take weeks to reach your loading dock.

It may be harder to quantify than quality improvements or streamlined production through the IoT, but that doesn’t mean that dependable revenue streams from loyal customers aren’t an important potential benefit as well.

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.

Live Blogging Gartner ITxpo Barcelona!

After a harrowing trip via Air France (#neveragain) I’m in lovely Barcelona, live-blogging Gartner ITxpo courtesy of Siemens — but they aren’t dictating my editorial judgment.

Keynoter is Peter Sondergaard, Sr. VP, Gartner Research:

  • start with high-scale traditional IT structures, but with new emphasis on cloud, etc. IT system now partially inside your org. and part outside.  We are half-way through transition to cloud: half of sales support now through cloud. More financial, HR & other functions. General trend toward cloud, but still some internal processes as necessary. Must clean up traditional inside processes.
    • “Ecosystems are the next evolution of Digital”
    • Must learn to measure your investments in customer experience.
    • Starting to explore VR & AR (personal shout out to PTC & clients such as Caterpillar!!)
    • must understand customer’s intent through advanced algorithms.  Create solutions to problems they don’t even know they have!
  • next domain of new platform: Things:
    • build strategies with two lenses: consumer preferences, AND the enterprise IoT lens.
    • leverage exponential growth in connected things
    • 27445 exabytes of data by 2020!
    • can’t just bolt on new systems on old ones: must rework existing systems to include devices — processes, workflow, much harder (i.e., my circular company paradigm).
  • intelligence: how your systems learn and decide independently
    • algorithms– algorithmic intelligence — drives decisions
    • now, AI, driven by machine learning. Machines learn from experience.
    • information is new code base
    • we will employ people to train things to learn from experience through neural networks
  • ecosystems
    • linear value supply chains transformed to ecosystems through electronic interchange.
    • others can build experiences, etc. that you haven’t thought out through APIs  — my “share data” Essential Truth. APIs implement business policies in the digital world.c
  • customers
    • customer driven

Where to start?

  • 70% of IoT implementation is through new organization within companies!

Now other Gartner analysts chime in:

  • insurance: engage your customers.
  • smart gov: must interact with those who implement. Must re-imaging public involvement sense/engage/interact
  • case study: Deakin University in Australia: digital platforms to enhance student experience.
  • case study: Trenitalia mass transit system switching to predictive maintenance! Huge cost savings. “Experience hands & beginners mind at work” — love that slogan!!!! “Listen to the train instead of scheduling maintenance”
  • blockchain: ecosystem, brilliant in simplicity. All can see transaction but no one can invade privacy. Use to solve many problems: data provenance, land registry, public infrastucture, AI.
  • Woo: use this to TRANSFORM THE WORLD!!!
  • ratz — I was preoccupied at time, they talked about a new mobility system for seniors — re my SmartAging paradigm!!
  • paradigm shift — partnering with competitors (much of what I wrote about in DataDynamite: share data, don’t hoard it!)  Think about Apple & Google driving car companies’ interfaces. “Do you join hands with digital giants or join hands with them?”).
  • ooh, love the digital assistant correcting his presentation. I can only dream of a future where there are millions added to grammar police!

 

 

Circular Company: Will Internet of Things Spark Management Revolution?

Could the IoT’s most profound impact be on management and corporate organization, not just cool devices?

I’ve written before about my still-being-refined vision of the IoT — because it (for the first time!) allows everyone who needs instant access to real-time data to do their jobs and make better decisions to share that data instantly —  as the impetus for a management revolution.

My thoughts were provoked by Heppelmann & Porter’s observation that:

“For companies grappling with the transition (to the IoT), organizational issues are now center stage — and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.”

If I’m right, the IoT could let us switch from the linear and hierarchical forms that made sense in an era of serious limits to intelligence about things and how they were working at thaFor companies grappling with the transition, organizational issues are now center stage—and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.t moment, to circular forms that instead eliminate information “silos” and instead give are circular, with IoT data as the hub. 

This article expands on that vision. I’ve tried mightily to get management journals to publish it. Several of the most prestigious have given it a serious look but ultimately passed on it. That may be because it’s crazy, but I believe it is feasible today, and can lead to higher profits, lower operating costs, empowering our entire workforces, and, oh yeah, saving the planet.

Audacious, but, IMHO, valid.  Please feel free to share this, to comment on it, and, if you think it has merit, build on it.

Thanks,

W. David Stephenson


The IoT Allows a Radical, Profitable Transformation to Circular Company Structure

 

by

W. David Stephenson

Precision assembly lines and thermostats you can adjust while away from home are obvious benefits of the Internet of Things (IoT), but it might also trigger a far more sweeping change: swapping outmoded hierarchical and linear organizational forms for new circular ones.

New org charts will be dramatically different because of an important aspect of the IoT overlooked in the understandable fascination with cool devices. The IoT’s most transformational aspect is that, for the first time,

everyone who needs real-time data to do their jobs better or
make better decisions can instantly 
share it.

That changes everything.

Linear and hierarchical organizational structures were coping mechanisms for the severe limits gathering and sharing data in the past. It made sense then for management, on a top-down basis, to determine which departments got which data, and when.

The Internet of Things changes all of that because of huge volumes of real-time data), plus modern communications tools so all who need the data can share it instantly. 

This will allow a radical change in corporate structure and functions from hierarchy: make it cyclical, with real-time IoT data as the hub around which the organization revolves and makes decisions.

Perhaps the closest existing model is W.L. Gore & Associates. The company has always been organized on a “lattice” model, with “no traditional organizational charts, no chains of command, nor predetermined channels of communication.”  Instead, they use cross-disciplinary teams including all functions, communicating directly with each other. Teams self-0rganize and most leaders emerge spontaneously.

As Deloitte’s Cathy Benko and Molly Anderson wrote, “Continuing to invest in the future using yesteryear’s industrial blueprint is futile. The lattice redefines workplace suppositions, providing a framework for organizing and advancing a company’s existing incremental efforts into a comprehensive, strategic response to the changing world of work.”  Add in the circular form’s real-time data hub, and the benefits are even greater, because everyone on these self-organizing teams works from the same data, at the same time.

You can begin to build such a cyclical company with several incremental IoT-based steps.

One of the most promising is making the product design process cyclical. Designers used to work in a vacuum: no one really knew how the products functioned in the field, so it was hard to target upgrades and improvements. Now, GE has found it can radically alter not only the upgrade process, but also the initial design as well:

“G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. ‘We’re getting these offerings done in three, six, nine months,’ (Vice-President of Global Software William Ruh said). ‘It used to take three years.’”

New IoT and data-analytics tools are coming on the market that could facilitate such a shift. GE’s new tool, “Digital Twins,” creates a wire-frame replica of a product in the field (or, for that matter, a human body!) back at the company. Coupled with real-time data on its status, it lets everyone who might need to analyze a product’s real-time status (product designers, maintenance staff, and marketers, for example) to do so simultaneously.

The second step toward a cyclical organization is breaking down information silos.

Since almost every department has some role in creation and sales of every product, doesn’t it make sense to bring them together around a common set of data, to explore how that data could trigger coordinated actions by several departments? 

Collaborative big-data analysis tools such as GE’s Predix, SAP’s HANA, and Tableau facilitate the kind of joint scrutiny and “what-if” discussions of real-time data that can make circular teamwork based on IoT-data sharing really achieve its full potential.

The benefits are even greater when you choose to really think in circular terms, sharing instant access to that real-time data not only companywide, but also with external partners, such as your supply chain and distribution network – and even customers – not just giving them some access later on a linear basis.  For example, SAP has created an IoT-enabled vending machine. If a customer opts in, s/he is greeted by name, and may be offered “your regular combination” based on past purchases, and/or a real-time discount. That alone would be neat from a marketing standpoint, but SAP also opened the resulting data to others, resulting in important logistics improvements. Real-time machine-to-machine (M2M) data about sales at the new vending machines automatically reroute resupply trucks to those machines currently experiencing the highest sales. 

With the IoT, sharing data can make your own product or service more valuable. With the Apple HomeKit, you can say “Siri, it’s time for bed,” and the Hue lights dim, Schlage lock closes, and Ecobee thermostat turns down. By sharing real-time IoT data, each of these companies’ devices become more valuable in combinations than they are by themselves.

Hierarchical and linear management is outmoded in the era of real-time data from smart devices. It is time to begin to replace it with a dynamic, circular model with IoT data as its hub.

Smart Infrastructure Logical Top Priority for IoT

The only issue Clinton and Trump can agree on is the need for massive improvements to the nation’s crumbling infrastructure, especially its roads and bridges. But, please, let’s make it more than concrete and steel.

Let’s make it smart, and let’s make it the top priority for the IoT because of the trickle-down effects it will have on everything else in our economy.

Global economist Jeffrey Sachs stated the case eloquently in a recent Boston Globe op-ed, “Sustainable infrastructure after the Automobile Age,” in which he argued that the infrastructure (including not only highways and bridges but also water systems, waste treatment, and the electric grid) shaped by the automotive age has run its course, and must be replaced by one “in line with new needs, especially climate safety, and new opportunities, especially ubiquitous online information and smart machines.”

I’m currently reading Carlo Ratti and Matthew Claudel’s The City of Tomorrow: Sensors, Networks, and the Future of Urban Life, which makes the same argument: “The answer to urban expansion and diffusion — and the host of social consequences that they bring — may be to optimize, rather than increase, transportation infrastructure.”

The IoT is perfectly suited to the needs of a new information-based infrastructure, especially one which must balance promoting the economy and mobility with drastic reductions in greenhouse gasses (transportation produces approximately a third of the U.S.’s  emissions). It can both improve maintenance (especially for bridges) through built-in sensors that constantly monitor conditions and can give advance warning in time to do less-costly and less-disruptive predictive maintenance, and reduce congestion by providing real-time information on current congestion so that real-time alterations to signals, etc., can be made rather than depending on outmoded fixed-interval stoplights, etc.

Sachs points out that infrastructure spending as a percentage of GDP has fallen since the Reagan years, and that it will require much more spending to bring it up to date.

A good place to look for a model is China.  The country already sports the largest concentration of M2M connections in the world: “74 million connections at the end of 2014, representing almost a third of the global base,” much of that in the form of smart bridges, smart rails, and smart grid, and critical because of the country’s rapid economic growth (Ratti cites a Beijing traffic jam that immobilized cars for an astounding 12 days!). Similarly, the government aims to have 95% of homes equipt with smart meters by next year.The country has used its investment in smart infrastructure to build its overall IoT industry’s ability to compete globally.

Sachs argues for a long-term smart infrastructure initiative:

“I propose that we envision the kind of built environment we want for the next 60 years. With a shared vision of America’s infrastructure goals, actually designing and building the new transport, energy, communications, and water systems will surely require at least a generation, just as the Interstate Highway System did a half-century ago.”

He says we need a plan based on three priorities to cope with our current national and global challenges:

“We should seek an infrastructure that abides by the triple bottom line of sustainable development. That is, the networks of roads, power, water, and communications should support economic prosperity, social fairness, and environmental sustainability. The triple bottom line will in turn push us to adopt three guiding principles.

First, the infrastructure should be “smart,” deploying state-of-the-art information and communications technologies and new nanotechnologies to achieve a high efficiency of resource use.

Second, the infrastructure should be shared and accessible to all, whether as shared vehicles, open-access broadband in public areas, or shared green spaces in cities.

Third, transport infrastructure should promote public health and environmental safety. The new transport systems should not only shift to electrical vehicles and other zero-emission vehicles, but should also promote much more walking, bicycling, and public transport use. Power generation should shift decisively to zero-carbon primary energy sources such as wind, solar, hydro, and nuclear power. The built environment should be resilient to rising ocean levels, higher temperatures, more intense heat waves, and more extreme storms.”

The IoT, particularly because of its ability to let us share real-time data that in turn can regulate the infrastructure, is ideally suited to this challenge. It’s time for Congress to not only spend on infrastructure but to do so wisely.

The result will be not only the infrastructure we need, but also a more robust IoT industry in general.

 

Concurrent Engineering: Great Tool to Make IoT “Circular Company” Reality!

Simultaneously sharing real-time data and collaborating (vs. linear methods where departments work in isolation from each other and sequentially) is a major theme of my “Circular Company” vision.

At the PTC ThingWorx expo in June one of the themes was “concurrent engineering“), which could be a major tool in making the circular company a reality.  The company’s Creo Advanced Assembly Extension  lets the the lead designer plan the assembly’s “skeleton” to give all the subassembly teams a common work basis and to include critical design info in the subassemblies. This lets each team work in parallel. If the lead engineer modifies the primary design, all the subassemblies will modify automatically. The process transfers seamlessly to the assembly line.

According to Wikipedia, the concept also fits nicely with the “circular economy” concept that’s gaining strength, by considering factors such as end-of-life disposal and recycling,  which is a great bonus of the “circular company”:

“.. part of the design process is to ensure that the entire product’s life cycle is taken into consideration. This includes establishing user requirements, propagating early conceptual designs, running computational models, creating physical prototypes and eventually manufacturing the product. Included in the process is taking into full account funding, work force capability and time. A study in 2006 claimed that a correct implementation of the concurrent design process can save a significant amount of money, and that organizations have been moving to concurrent design for this reason.[3] It is also highly compatible with systems thinking [which, BTW, is what originally introduced me to this concept, many years ago, through the writings of Peter Senge and Jay Forrester, who, BTW, is still kickin’ at 97!] and green engineering.”

Come on, gang: hierarchy and linear processes are soooo 20th century. Get with the program.

High-speed 3D Printer & IoT Could Really Revolutionize Design & Manufacturing

There’s a new high-speed 3D printer on the horizon which, coupled with the IoT, could really revolutionize product design and manufacturing.

I’ve raved in the past about 3D printing’s revolutionary potential, but I’ll admit I was still thinking primarily in terms of rapid prototyping and one-off repair parts.  Now, according to Bloomberg, HP is going to transfer its ink-jet printer expertise to the 3D printer field, with a $130,000 model set for release later this year that, for the first time, could make 3D printing practical and affordable for large-scale manufacturing, with “parts at half the expense and at least 10 times faster than rival printers — and likely [using] lower-cost materials.”

Combined with the IoT, that would go a long way toward making my “precision manufacturing” vision a reality, with benefits including less waste, streamlined products (a single part replacing multiple ones that previously had to be combined into the final configuration),  factories that are less reliant on outside parts and encouraging mass customization of products that would delight customers. 

Customers are already lining up, and see manufacturing-scale 3D printing as a game-changer:

Jabil Circuit Inc. [itself a digital supply-chain innovator] plans to be an early adopter of HP’s device, printing end plastic parts for aerospace, auto and industrial applications that it currently makes using processes such as injection molding, John Dulchinos, vice president of digital manufacturing at the electronics-manufacturing service provider, said in an interview.

“‘We have use cases in each of these segments,’ Dulchinos said. ‘Parts that are in hundreds or thousands or tens of thousands of units — it’s cheaper to 3D print them than mold them.’”

Other HP partners in the venture include BMW, Nike, and and Johnson & Johnson. The article cites research by Wohlers Associates predicting that manufacturing using 3D printers could “eventually grab at least 5 percent of the worldwide manufacturing economy, and translate into $640 billion in annual sales.”

3D Systems is also making the transition to large-scale 3D printing.

As I’ve written before in regard to GE’s leadership in the field, toss in some nanotech on the side, and you’ve really got something.

 

I’ll be on live Thursday morning talking the IoT and Smart Cities

Cities are the future of global civilization and the economy, and smart cities are the only way they’ll survive and prosper!

Join me and two SAP experts on the subject, Dina Dayal (global vice president for Digital Enterprise Platform Group) and Saj Kumar (vice president of Digital Transformation and Internet of Things) as we guest on Bonnie D. Graham’s always-enjoyable Coffee Break With Game Changers, 11 AM EDT, 8 AM PDT (it will be archived at the site if you can’t listen live.

Bonnie likes us to start with a provocative (and relevant) quote, and mine will be from Jane Jacobs’ great Death and Life of American Cities:

Cities have the capability of providing something for everybody, only because,
and only when, they are created by everybody.”

… with the emphasis on everybody: I’ll explain that there really is an important role in smart cities for city government, the private sector, and — often ignored — grassroots innovators.

A critical key is the global Things Network, created by Wienke Gieseman and his Gang of Ten in Amsterdam,  who created a free LoRaWAN city-wide data network for $12,000 and in less than a month, and then went on to create a global network and a crowdsourced campaign to bring the cost of LoRaWAN hubs down to $200.

I like to think I was there at the beginning, working with Vivek Kundra, then the DC’s CTO (before his accomplishments there led Obama to name him the first US CIO). Vivek and Mayor Fenty took the bold move of releasing more than 40 major city data bases on a real-time basis, then held a contest to get smart developers to create new-fangled “apps” (remember, this was 2008!) to capitalize on them. Because the apps were open-source, they’ve been constantly copied and improved in the years since then.

And that’s only the beginning:

  • creative startups such as Alicia Asin’s Libelium, working with an enlightened city government, have made Barcelona a massive testlab for the Iot, and arguably THE smart city of the day
  • Columbus OH won the Obama Administration’s Smart City competition for its all-inclusive transportation scheme (and I do mean all-inclusive: who ever thought a better transportation network could be used to cut infant mortality???)
  • Smart Cities organizations have been formed in cities worldwide to share ideas — we’re all in this together!

And, of course, I’m going to bring the discussion down to earth by really getting down and dirty — yessiree, we’re gonna talk trash cans.

Be there or be square!

 

Game-changer! AR Enables IoT merging of physical and digital

Several months ago I wrote about an analogy to the world of business prior to the Internet of Things,  in which a metaphorical illness called “Collective Blindness” affected every human for all time, so that we were unable to peer inside things. We just accepted that as an inevitable limitation, creating all sorts of work-arounds to try to be able to cope in the absence of real-time information about things of all sorts.

I then said that the Internet of Things would allow us to end Collective Blindness, getting — and sharing — the real-time data we’d need to make better decisions and work more precisely.

Now I’ve seen the tool that allows us to end that Collective Blindness: PTC’s Augmented Reality (AR), tool, Vuforia.

At last week’s PTC Liveworx conference, there was a mind-blowing demo of Vuforia by Terri Lewis, director of solutions and tech at Caterpillar, as it applied to the company’s XQ Gen Set, a portable power generator for job sites and special events.  As PTC CEO James Heppelmann reiterated several times, the software is creating

a single new reality that’s physical and digital at the same time….. and democratizing AR.”
(my emphasis)

Used as a sales tool, Vuforia Studio Enterprise lets the customer look inside the product, as contrasted with a static brochure.  That’s neat, but what’s really incredible is how it lets maintenance people peer inside the device, and do so in a way (as Heppelmann said, “humans prefer to use sight an sound simultaneously”) that is much more effective in terms of zeroing in not only on what’s wrong, but also these specifics (such as replacement part numbers, etc.) to quickly repair them.  Incidentally Heppelmann and Harvard Prof. and biz guru Michael Porter are collaborating on another article, this one on how to apply AR in a business setting (turns out that Porter is a member of the PTC board, and in the past few years he’s been using it as a lab to evaluate business use of the IoT).

Another example of Vuforia’s work in maintenance demonstrated at the conference was by Flowserve, the world’s largest flow control company. Vuforia helps them manage devices in real-time (the person at the pump can see what is actually happening), cutting the number of repair trips from three to one, because they are able to diagnose the problem at the beginning, and bring the replacement parts with them. Then they can do do real-time simulations to see if the problem has been solved. The company believes they saved $2 billion in excess repart costs in 2015 alone.

 Vuforia Studio AR lets users set up augmented reality simulations in minutes without writing code, and can also be used in product design review.

I had a chance to try the XQ Gen Set visualization with an AR headset myself, and it was as powerful as promised.

I must admit the first time I tried on an AR headset — and almost jumped on one of the other users because I was jumping back to avoid falling several hundred feet off a sharp cliff into the ocean — I was amazed by the realism, but didn’t really think much about its serious business uses.  PTC’s Vuforia Studio AR made me a believer: it’s helping us cure Collective Blindness, and AR will be yet another tool to bring about unprecedented precision and efficiency in every aspect of manufacturing and product maintenance!

Liveblogging #IoT @ #Liveworx 2016 — day 2

Colin Angle, CEO, iRobot:

  • smart home: people have hard time learning how to use current generation of smart home devices. Unacceptable delay in activation. we need “just live your life, and the house does the right thing.” Shouldn’t have to pull out phone.  Will be aware of your location, act naturally.
  • “Need metaphor of the room to exist” — and robot will do that. Cool: Future iRobot could do that while doing its own job. New generation of iRobot has mapped 1/2 billion sq. feet in less than a year.
  • Would be a lot cooler if you can just buy a smart bulb, screw it in, and it would just work without having to do anything.
  • Pogue: how do you deal with the criticism that iRobot LOOKS as if it is cleaning randomly? Angle: Customers just cared that it actually did the job. “Just make it clean better” — I don’t care how long it takes, because I’m not there.
  • Next generation of robotics will be manipulation.
  • Angle: “if you’re worried about AI taking over, don’t worry about me, worry about the marketing guys.  … I just vacuum floors.”  This is so funny: “I used to be a self-respecting robot scientist, but it wasn’t until I became a vacuum salesman that I made any money.”

Eric Schaeffer, Accenture:

  • significant change, affecting both demand and supply. No industry unaffected.
  • to remain competitive, countries and companies will have to be at edge of innovation. Faster than ever.
  • strategies focused on cost-cutting less effective than emphasis on new products
  • World Economic Forum looking at impact of internet on business and society
    • 1st report: industrial internet of things & how it would transform industries. Adoption accelerating.
    • 3-4 yrs. from now, major structural changes, massively transformative (but you can begin w/ incremental change).
    • only 7% of 500 companies surveyed said they had comprehensive IoT strategy.
  • illustrations: water distribution network, dramatic time savings in time to install plane seats.
  • where’s the value? integrate smart products and back-office systems for IoT and As-a-Service Enabled approach.
  • Moving to multi-dimensional definition of a product.
  • Companies will become platforms
  • Sales models will move to as-a-service
  • They have identified 30% “uplift” for generic company. Specific improvements from digitization of the enterprise varies from one industry to another
  • Examples:
    • a Euro telecoms company: using a Google Glass-style product for field technicians at job sites and to capture data in field. 20-40% productivity gains.
    • pay-per-use vehicle services: a French tire company that wants to create 1 b Euro biz in “mobility.” — from selling tires to selling outcomes! Money-back guarantee. 2.5 liters reduction in gas use for 100 km driven — huge reduction in trucking companies. 
    • connected homes: working with multiple clients to define what the services will be.
  • Scope and scale of changes acute.
  • Recent survey: 42% of companies have said improvement has been in how they interact with customers.
  • Leading companies moving from product push to creating value by:
    • focusing on higher value solutions
    • focusing on enhanced experience
    • focusing on customer outcomes.
  • still focus on the what, but also the how!
  • dramatic shift to “Total Experience Innovation.”
    • Be Solution Centric: all centered on customer
    • Build an Insight Platform: continuously renew
    • Drive Pivotal Leaders: find right leaders.
  • Examples:
    • ALS patients: helping them regain control of their lives through wearables, displays, etc. done with Phillips.
    • industrial equipment manufacturer: breaking silos. Innovation digital factory: to instill connectivity into the biz, and build outcome-based offers, and increasing level of engagement with customers.
  • Future:
    • implantable technologies
    • wearable internet
    • IoT everywhere
    • connected home
    • driverless cars
    • robotics
    • sharing economy

Here’s the main event!  Prof. Michael Porter, iRobot’s Colin Angle & PTC’s Jim Heppelmann on IoT transformation:

  • Porter & Heppelmann’s research collaboration on IoT: he was a PTC board member. “Magical opportunity”
  • Porter: both products and internal operations are changing due to IoT
  • Porter: still in early stages of industrial conversion
  • Porter: IoT is wrong term: real emphasis is change in products and what they can do. Embedding in service companies. Every service business will be affected.
  • Heppelmann: the IoT also affects how the customer operates the product.
  • Angle: iRobot has jumped into IoT with both feet. Touches every aspect of their biz.
  • Heppelmann: missed the human element in this. That led to their AR initiative, so people could relate to the new products in ways that are both physical and digital.
  • Angle: iRoomba sending data back in real time on how it’s being used. No more focus groups! Robot part of design team.
  • Heppelmann: fundamentally different design process now.
  • Porter: who collects, who decides how to use the data? New chief data officer position.
  • Angle: who is best to handle the data? Idea of chief data officer interesting. Product ID a new competency.
  • Porter: starting to see new organizational structures pop up. Becoming possible to sell almost anything as a service.
  • Heppelmann: “devops” — combine development & operations. Chief Data Officer — whose job is it to decide what the data is telling various departments?
  • Porter: can’t have handoffs between each group, because you need continuing dialogue.
  • Heppelmann: industrial companies can learn from software companies, with techniques such as agile dev in software.  Continuous improvement. Also, “customer analytics.”