A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

I’ve been giving a lot of thought recently about how my vision of I0T-based “SmartAging” through a combination of:

  • Quantified Self health apps and devices to improve seniors’ health and turn their health care into more of a partnership with their doctors
  • and smart home devices that would make it easier to manage their homes and “age in place” rather than being institutionalized

could meld with the exciting developments in smart city devices and strategy.  I believe the results could make seniors happier and healthier, reduce the burdens on city budgets of growing aging populations, and spur unprecedented creativity and innovation on these issues. Here’s my vision of how the two might come together. I’d welcome your thoughts on the concept!

 

A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

It’s clear business as usual in dealing with aging in America won’t work anymore.  10,000 baby boomers a day retire and draw Social Security. Between now and 2050, seniors will be the fastest growing segment of the population.  How can we stretch government programs and private resources so seniors won’t be sickly and live in abject poverty, yet millennials won’t be bankrupted either?

As someone in that category, this is of more than passing interest to me! 

I propose a new approach to aging in cities, marrying advanced but affordable personal technology, new ways of thinking about aging, and hybrid formal and ad hoc public-private partnerships, which can deal with at least part of the aging issue. Carving out some seniors from needing services through self-reliance and enhancing their well-being would allow focusing scarce resources on the most vulnerable remaining seniors. 

The approach is made possible not only by the plummeting cost and increasing power of personal technology but also the exciting new forms of collaboration it has made possible.

The proposal’s basis is the Internet of Things (IoT).  There is already a growing range of IoT wearable devices to track health indicators such as heart rates and promoting fitness activities, and IoT “smart home” devices controlling lighting, heat, and other systems. The framework visualized here would easily integrate these devices, but they can be expensive, so it is designed so seniors could benefit from the project without having to buy the dedicated devices.

This proposal does not attempt to be an all-encompassing solution to every issue of aging, but instead will create a robust, open platform that government agencies, companies, civic groups, and individuals can build upon to reduce burdens on individual seniors, improve their health and quality of life, and cut the cost of and need for some government services. Even better, the same platform and technologies can be used to enhance the lives of others throughout the life spectrum as well, increasing its value and versatility.

The proposal is for two complementary projects to create a basis for later, more ambitious one.

Each would be valuable in its own right and perhaps reach differing portions of the senior population. Combined, they would provide seniors and their families with a wealth of real-time information to improve health, mobility, and quality of life, while cutting their living costs and reducing social isolation.  The result would be a mutually-beneficial public-private partnerships and, one hopes, improve not only seniors’ lives, but also their feeling of connectedness to the broader community. Rather than treat seniors as passive recipients of services, it would empower them to be as self-reliant as possible given their varying circumstances. They would both be based on the Lifeline program in Massachusetts (and similar ones elsewhere) that give low-income residents basic Internet service at low cost.

Locally, Boston already has a record of achievement in internet-based services to connect seniors with others, starting with the simple and tremendously effective SnowCrew program that Joe Porcelli launched in the Jamaica Plain neighborhood. This later expanded nationwide into the NextDoor site and app, which could easily be used by participants in the program.

The first project would capitalize on the widespread popularity of the new digital “home assistants,” such as the Amazon Echo and Google Home.  One version of the Echo can be bought for as little as $49, with bulk buying also possible.  A critical advantage of these devices, rather than home monitoring devices specifically for seniors, is that they are mainstream, benefit from the “network effects” phenomenon that means each becomes more valuable as more are in use, and don’t stigmatize the users or shout I’M ELDERLY. A person who is in their 50s could buy one now, use it for routine household needs, and then add additional age-related functions (see below) as they age, amortizing the cost.

The most important thing to remember about these devices regarding aging is the fact that they are voice-activated, so they would be especially attractive to seniors who are tech-averse or simply unable to navigate complex devices. The user simply speaks a command to activate the device.

The Echo (one presumes a variation on the same theme will soon be the case with the “Home,” Apple’s forthcoming “Home Pod” and other devices that might enter the space in the future) gets its power from “skills,” or apps, that are developed by third-party developers. They give it the power, via voice, to deliver a wide range of content on every topic under the sun.  Several already released “skills” give an idea of how this might work:

  • Ask My Buddy helps users in an emergency. In an emergency, it can send phone calls or text messages to up to five contacts. A user would say, “Alexa, ask my buddy Bob to send help” and Bob would get an alert to check in on his friend.
  • Linked thermostats can raise or lower the temperature a precise amount, and lights can also be turned on or off or adjusted for specific needs.
  • Marvee can keep seniors in touch w/ their families and lessen social isolation.
  • The Fitbit skill allows the user who also has a Fitbit to trace their physical activity, encouraging fitness.

Again looking to Boston for precedent, related apps include the Children’s Hospital and Kids’ MD ones from Children’s Hospital. Imagine how helpful it could be if the gerontology departments of hospitals provided similar “skills” for seniors!

Most important to making this service work would be to capitalize on the growing number of city-based open-data programs that release a variety of important real-time data bases which independent developers mash up to create “skills”  such as real-time transit apps.  The author was a consultant to the District of Columbia in 2008 when it began this data-based “smart city” approach with the Apps for Democracy contest, which has spawned similar projects worldwide since then.  When real-time city data is released, the result is almost magic: individuals and groups see different value in the same data, and develop new services that use it in a variety of ways at no expense to taxpayers.

The key to this half of the pilot programs would be creating a working relationship with local Meetups such as those already created in various cities for Alexa programmers, which would facilitate the relationship) to stage one or more high-visibility hackathons. Programmers from major public and social service institutions serving seniors, colleges and universities, and others with an interest in the subject could come together to create “skills” based on the local public data feeds, to serve seniors’ needs, such as:

  • health
  • nutrition
  • mobility
  • city services
  • overcoming social isolation (one might ask how a technological program could help with this need. The City of Barcelona, generally acknowledged as the world’s “smartest” city, is circulating an RFP right now with that goal and already has a “smart” program for seniors who need immediate help to call for it) .

“Skills” are proliferating at a dizzying rate, and ones developed for one city can be easily adapted for localized use elsewhere.

Such a project would have no direct costs, but the city and/or a non-profit might negotiate lower bulk-buying rates for the devices, especially the l0wer price ($59 list) Amazon Dot, similar to the contract between the Japan Post Group, IBM, and Apple to buy 5 million iPads and equip them with senior-friendly apps from IBM which the Post Group would then furnish to Japanese seniors. Conceivably, the Dots bought this way might come preloaded with the localized and senior-friendly “skills.” 

The second component of a prototype SmartAging city program would make the wide range of local real-time location-based data available by various cities usable by cities joininh the 100+ cities worldwide who have joined the “Things Network” that create free citywide data networks specifically for Internet of Things use.

The concept uses technology called LoRaWAN: low-cost (the 10 units used in Amsterdam, each with a signal range of about 6 miles, only cost $12,000 total — much cheaper ones will be released soon), and were deployed and operative in less than a month!  The cost and difficulty of linking an entire city has plummeted as more cities join, and the global project is inherently collaborative.

With Things Network, entire cities would be converted into Internet of Things laboratories, empowering anyone (city agencies, companies, educational institutions, non-profits, individuals) to experiment with offering new services that would use the no-cost data sharing network.  In cities that already host Things Networks,  availability of the networks has spawned a wide range of novel local services.  For example, in Dunblane, Scotland, the team is developing a ThingsNetwork- based alarming system for people with dementia.  Even better, as the rapid spread of citywide open data programs and resulting open source apps to capitalize on them has illustrated, a neat app or service created in one city could easily be copied and enhanced elsewhere — virtuous imitation!

The critical component of the prototype programs would be to hold one or more hackathons once the network was in place.  The same range of participants would be invited, and since the Things Network could also serve a wide range of other public/private uses for all age groups and demographics, more developers and subject matter experts might participate in the hackathon, increasing the chances of more robust and multi-purpose applications resulting.

These citywide networks could eventually become the heart of ambitious two-way services for seniors based on real-time data, similar to those in Bolsano, Italy

The Internet of Things and smart cities will become widespread soon simply because of lowering costs and greater versatility, whether this prototype project for seniors happens or not. The suggestions above would make sure that the IoT serves the public interest by harnessing IoT data to improve seniors’ health, reduce their social isolation, and make them more self-sufficient. It will reduce the burden on traditional government services to seniors while unlocking creative new services we can’t even visualize today to enhance the aging process.

IoT: LiveBlogging PTC’s LiveWorx

Got here a little late for CEO Jim Heppelman’s keynote, so here goes!

  • Vuforia: digital twin gives you everything needed for merging digital “decorations” on the physical object
  • Unique perspective: AR takes digital back to the physical. Can understand & make better decisions.
  • Virtual reality would allow much of the same. Add in 3-D printing, etc.
  • “IoT is PLM.” Says PTC might be only company prepared to do both.
  • Says their logo captures the merger of digital and physical.
  • Case studies: they partnered with Bosch’s Rexroth division. Cytropac built-in IoT connectivity–  used Creo. Full life-cycle management. Can identify patterns of usage, etc. Using PTC’s analytics capacity, machine learning analysis. Want to improve cooling efficiency (it was high at first). Model-based digital twin to monitor product in field, then design an upgrade. How can they increase cooling efficiency 30%??  Came up with new design to optimize water channel that they will build in using 3-D printing. Cool (literally!). 43% increase in cooling efficiency. The design change results in new recommendation engine that helps in sales. Replaced operating manual with 3-D that anyone can understand. (BTW: very cool stagecraft: Heppelmann walks around stage interviewing the Rexroth design team at their workstations).
  • Ooh: getting citizen developers involved!!!  Speeds process, flexibility. App shows how products are actually operating in the field. Lets sales be much more proactive in field. Reinventing CRM.  May no longer need a physical showroom — just put on the AR headset.
  • Connectivity between all assets. The digital twin is identical, not fraternal. Brings AR into factory. They can merge new manufacturing equipment with legacy ones that didn’t have connectivity.  ABB has cloud-based retrofit sensors. Thingworx can connect almost anything, makes Industry 4.0 possible. Amazing demo of a simulated 3-D disassembly and replacement.
  • Hmmm — closing graphic of his preso is a constantly rotating circular one. Anticipating my “circular company” talk on Wednesday????

Closing the Loop With Enterprise Change Management. Lewis Lawrence of Weatherford, services to petroleum industry:

  • former engineer. In charge of Weatherford’s Windchill installation (they also use Creo).
  • hard hit by the drop in gas prices
  • constant state of flux
  • 15 years of constant evolution
  • their mantra: design anywhere, build anywhere.
  • enterprise change — not just engineering.
  • hmmm: according to his graphics, their whole change process is linear. IMHO, that’s obsolete in era of constant change: must evolve to cyclical. Ponderous process…
  • collect data: anything can be added, if it’s latest

The IoT Can Even Help You Breathe Better: GCE Group’s Zen-O portable oxygen concentrator for people with respiratory problems (not actually launched yet):

  • InVMA has built IoT application using ThingWorx to let patients, docs and service providers carefully monitor data
  • GCE made radical change from their traditional business in gas control devices. Zen-O is in the consumer markets. They were very interested in connected products — especially since their key competitor launched one!
  • Goals: predictive maintenance, improved patient care, asset management, development insight.
  • Design process very collaborative, with many partners.

The Digital Value Chain: GE’s Manufacturing Journey. Robert Ibe, global IT Engineering Leader at GE Industrial Solutions:

  • supports Brilliant Factory program.
  • they design and manufacture electrical distribution equipment, 30 factories worldwide.
  • “wing-to-wing” integrated process
  • had a highly complex, obsolete legacy
  • started in 2014: they were still running really old CAD technology. 14 CAD repositories that didn’t talk to each other. 15 year old PLM software. No confidence in any of data they had.
  • They began change with PLM — that’s where the digital thread begins.  PLM is foundation for their transformation.
  • PLM misunderstood: use it to map out cohesive, cross-functional, model-based strategy. Highlight relevance of “design anywhere — manufacture anywhere.” Make PLM master of your domain. Make it critical to commercial & manufacturing. Advertise benefits & value.
  • Whole strategy based on CAD. Windchill heart of the process.
  • Rate of implementation faster than business can keep up with!
  • Process: implementation approach:
    • design systems integration
    • model-based design
    • digital thread
    • manufacturing productivity.
  • common enterprise PLM framework
  • within Windchill, can see entire “digital bill of documents.”
  • focused on becoming critical for supply chain.
  • total shift from their paper-based legacy.
  • integrated regulatory compliance with every step of design.

It’s Not Your Grandmother’s IoT: Blockchain and IoT Morph Into An Emerging Technology Powerhouse:

  • Example of claims for fair-traded coffee that I’ve used in past

Finding Business Value in IoT panel:

  • Bayer — been in IoT (injection devices for medicine) for 7 years.  Reduced a lot of parts inventory.
  • Remote control of vending machines replaces paper & pencil
  • Your team needs to evangelize for biz benefits of IoT
  • New Opportunities:
    • vision and language
    • interacting with physical world
    • problem solving.
  • Didn’t know!  Skype can do real-time translation.
  • Google Deep Mind team worked internally, cut energy costs at its server farms. 15% energy reduction.
  • Digital progress makes economic pie bigger, BUT  most people aren’t benefitting economicallly. Some may be worse off. “Great decoupling” — mushrooming economic gap. One reason is that tech affects different groups differently.
  • “Entirely possible to create inclusive prosperity” through tech!

 

WEDNESDAY

Delivering Smart City Solutions and an Open Citywide Platform to Accelerate Economic Growth and Promote New Solution Innovation, Scott McCarley, PTC:

  • $40 trillion potential benefits from smart cities
  • 1st example & starting point for many cities, is smart lightpoles. Major savings plus value added. Real benefit is building on that, with systems of systems (water, traffic, energy, etc.) — the systems don’t operate in isolation.
  • Future buildings may have built-in batteries to add to power supply. Water reclamation, etc.
  • Cities are focused on KPIs across all target markets.
  • Cornerstone systems for a city: power & grid, water/wastewater, building management, city services & infrastructure.
  • Leveraging ThingWorx to address these needs:
    • deploy out-of-box IoT solutions from a ThingWorx Solution Provider: All examples, include Aquamatix, DEPsys (grid), Sensus, All Traffic, Smoove (bike sharing).
    • leverage ThingWorx to rapidly develop new IoT solutions.
      connect to any device, rapidly develop applications, visually model systems, quickly develop new apps. Augmented reality will play a role!
    • create role-based dashboards:
      one for your own operations, another for city.
    • bring the platform to create a citywide platform.
      Sum of connected physical assets, communication networks, and smart city solutions.

Digital Supply Networks: The Smart Factory. Steven Shepley, Deloitte:

  • 3 types of systems: 1) foundational visualization solutions:  KPIs, etc. 2) advanced analytical solutions 3) cyber-physical solutions.
  • Priority smart factory solutions:
    • advanced planning (risk-adjusted MRP), dynamic sequencing, cross network.
    • value chain integration: signal-based customer/supplies integration, dynamic distribution routing/tracking, digital twin.
    • asset efficiency: predictive maintenance, real-time asset tracking intelligence, energy management
    • labor productivity: robotic and cognitive automation, augmented reality-driven efficiency, real-time safety monitoring
    • exponential tech: 3-D printing, drones, flexible robots.
  • How to be successful: think big, start small, scale fast
  • Act differently: multi-disciplinary teams,
  • sensors getting simpler, easier to connect & retrofit. National Connectors particularly good.

Global Smart Home, Smart Enterprise, and Smart Cities IoT Use Cases. Ken Herron, Unified InBox, Pte.

  • new focus on customer
  • H2M: human to machine communication is THE key to IoT success. Respect their interests.
  • Austin TX: “robot whisperer” — industrial robot company. Their robots aging out, getting out of tune, etc. Predictive analytics anticipates problems.
  • Stuttgart: connected cow — if one cow is getting sick, may spread to entire herd. Intervene.
  • Kuala Lumpur: building bot — things such as paper towel dispensers communicating with management.
  • London: Concierge chatbot — shopper browsing can chat with assistant on combining outfits.
  • Dubai: smart camera. Help find your car in mega-shopping center: read license plates, message the camera, it gives you map to the car.
  • Singapore: Shout — for natural disasters. Walks the person making the alert through process, confirms choices.
  • Stuttgart: Feinstaubalarm — occasional very bad airborne dust at certain times. Tells people with lung problems options, such as taking mass transit.
  • Singapore: Smart appliances — I always thought smart fridge was stupid, but in-fridge camera that lets you shoot a “shelfie” does make sense
  • Fulda Germany: smart clothing for military & police: full record of personal health at the moment. Neat!
  • Noida India — smart sneakers can automatically post your run results (see connection to my SmartAging concept)

Business Impact of IoT, Eric Schaeffer, Accenture:

  • Michelin delivery trucks totally reinvented, major fuel savings, other benefits.
  • manufacturing being deconstructed
  • smart, connected products are causing it
  • industrial companies must begin transformation today

Thingworx: Platform for Management Revolution. W. David Stephenson, Stephenson Strategies:

Here are key points from my presentation about how the IoT can allow radical transformation from linear & hierarchical companies to IoT-centric “circular companies” (my entire presentation can be found here):

  • The IoT can be the platform for dramatic management change that was impossible in the past.
  • Making this change requires an extraordinary shift in management thinking: from hierarchy to collaboration.
  • The results will be worth the effort: not only more efficiency & precision, but also new creativity, revenue streams, & customer loyalty. 
  • In short, it will allow total transformation!

Kickstarting America’s Digital Transformation. Aneesh Chopra & Nicholas Thompson!

  • on day one, Our President (not the buffoon) told Chopra he wanted default to be switch from closed to open government & data.
  • National Wireless Initiative: became law 1 yr. after it was introduced.  Nationwide interoperable, secure wireless system.
  • Obama wanted to harness power of Internet to grow the economy. Talked to CIO of P & G, who was focused on opening up the company to get ideas from outside.
  • Thompson big on open data, but he thinks a lot more now is closed, we’re going wrong way.
  • Interesting example of getting down cost of solar to $1 per installed watt!!
  • Thompson: growing feeling that technology isn’t serving us economically. Chopra: need to democratize the benefits.
  • Chopra talking about opening up Labor Dept. data to lead to creative job opportunities for underserved.

 

 

 

 

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

Smart Disposables: Could This Be Birth of Internet of Everything?

Could EVERYTHING be “smart?” It may be happening sooner we thought, and with implications that are hard to fathom today.

That’s the potential with new technology pioneered by Shyam Gollakota, an assistant professor at the University of Washington.  For the first time, it would let battery- and cordless-less devices harvest signals from Wi-Fi, radio, or TV to communicate and power themselves.

Astounding!

For a long time, the most “out there” idea about IoT sensors has been Prof. Kris Pister’s “smart dust” concept, which aimed at a complete sensor/communication system in a package only one cubic millimeter in size. Pister argued that such devices would be so small and cheap that they could be installed — or perhaps even scattered — almost everywhere. The benefits could be varied and inconceivable in the past. According to Pister, possible applications could include:

  • “Defense-related sensor networks
    • battlefield surveillance, treaty monitoring, transportation monitoring, scud hunting, …
  • Virtual keyboard
    • Glue a dust mote on each of your fingernails.  Accelerometers will sense the orientation and motion of each of your fingertips, and talk to the computer in your watch.  QWERTY is the first step to proving the concept, but you can imagine much more useful and creative ways to interface to your computer if it knows where your fingers are: sculpt 3D shapes in virtual clay, play  the piano, gesture in sign language and have to computer translate, …
    • Combined with a MEMS augmented-reality heads-up display, your entire computer I/O would be invisible to the people around you.  Couple that with wireless access and you need never be bored in a meeting again!  Surf the web while the boss rambles on and on.
  • Inventory Control
    • The carton talks to the box, the box talks to the palette, the palette talks to the truck, and the truck talks to the warehouse, and the truck and the warehouse talk to the internet.  Know where your products are and what shape they’re in any time, anywhere.  Sort of like FedEx tracking on steroids for all products in your production stream from raw materials to delivered goods.
  • Product quality monitoring
    • temperature, humidity monitoring of meat, produce, dairy products
      • Mom, don’t buy those Frosted Sugar Bombs, they sat in 80% humidity for two days, they won’t be crunchy!
    • impact, vibration, temp monitoring of consumer electronics
      • failure analysis and diagnostic information, e.g. monitoring vibration of bearings for frequency signatures indicating imminent failure (back up that hard drive now!)
  • Smart office spaces
    • The Center for the Built Environment has fabulous plans for the office of the future in which environmental conditions are tailored to the desires of every individual.  Maybe soon we’ll all be wearing temperature, humidity, and environmental comfort sensors sewn into our clothes, continuously talking to our workspaces which will deliver conditions tailored to our needs.  No more fighting with your office mates over the thermostat.
  • Interfaces for the Disabled (courtesy of Bryndis Tobin)
    • Bryndis sent me email with the following idea: put motes “on a quadriplegic’s face, to monitor blinking & facial twitches – and send them as commands to a wheelchair/computer/other device.”  This could be generalized to a whole family of interfaces for the disabled.  Thanks Bryndis!”

Now imagine that a critical component of such a tiny, ubiquitous device was removed. Because it didn’t need a battery it could be even smaller and cheaper (because of cheaper and simpler radio hardware circuitry).

The goal is having billions of disposable devices start communicating,” Gollakota said (my emphasis).

You may remember that I’ve written before about my metaphor of a pre-IoT era of “Collective Blindness,” the universal inability to peer (literally or figuratively) inside things in the past, which forced us to create all sorts of work-arounds to cope with that lack of real-time data. Imagine how precise our knowledge about just about everything will be if Gollakota’s technology becomes commonplace.

.As Technology Review reported, the critical challenge is making it possible for a device lacking a traditional power source to communicate: “Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.”

The principle making the innovation possible is “backscattering,” reflecting waves, particles or signals back in the direction they came from, which creates a new signal.

The early results are encouraging. Gollakata has made a contact lens that can connect with a smartphone. Think I’ll pass on that one, but other devices he and his team have created include brain implants and “a flexible skin patch that can sense temperature and respiration, a design that could be used to monitor hospital patients.”  Marketers will love this one: a concert poster broadcasting a bit of the featured band’s music over FM radio!

Jeeva Wireless, Gollakata’s commercial spinoff, is using a variety of the technology, “passive Wi-Fi.” Devices using it can data up to 100 feet and connect through walls.

Tiny passive devices using backscatter could be manufactured for as little as a dollar. “In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.”

Gollakata sums up the potential impact: “We can get communication for free” (my emphasis).

That’s incredible, but in light of the continuing series of major DDoS attacks made possible by weak or non-existent IoT security measures, I must remind everyone that speed, power, and ubiquity aren’t everything: we also need IoT security, so I hope the low cost and ability to function without a dedicated energy source won’t obscure that need as well.


 

BTW: a MIT profile on Gollakata mentions one of his other, related, inventions, which I think would mesh beautifully with my SmartAging vision to help seniors age in place in better health.

It’s called  WiSee, which uses wireless signals such as Wi-Fi to “enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources (e.g., a Wi-Fi router and a few mobile devices in the living room).”

I love the concept for seniors, because (like Echo, which I’m finally getting!!) it doesn’t require technical expertise, which many seniors lack and/or find intimidating, to launch and direct automated devices. In this case, the activation is through sensing and recognition of human gestures. According to Gollakata,“’Gestures enable a whole new set of interaction techniques for always-available computing embedded in the environment. As an example, he suggests that a hand swiping motion in the air could enable a user to control the radio volume while showering – or change the song playing on the stereo in the living room while you are cooking in the kitchen.”

He goes on to explain:

“…. that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. ‘We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users.”

Combine that with speaking to Alexa, and even the most frail seniors could probably control most of the functions in a smart home. Gollakota says that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. “We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users, “he says.

Incredible work, professor!

Don’t Say I Didn’t Warn You: One of Largest Botnet Attacks Ever Due to Lax IoT Security

Don’t say I didn’t warn you about how privacy and security had to be THE highest priority for any IoT device.

On September 19th, Chris Rezendes and I were the guests on a Harvard Business Review webinar on IoT privacy and security. I once again was blunt that:

  • you can’t wait until you’ve designed your cool new IoT device before you begin to add in privacy and security protections. Start on Day 1!
  • sensors are particularly vulnerable, since they’re usually designed for minimum cost, installed, and forgotten.
  • as with the Target hack, hackers will try to exploit the least protected part of the system.
  • privacy and security protections must be iterative, because the threats are constantly changing.
  • responsible companies have as much to lose as the irresponsible, because the result of shortcomings could be held against the IoT in general.

The very next day, all hell broke loose. Hackers used the Mirai malware to launch one of the largest distributed denial-of-service attack ever, on security blogger Brian Krebs (BTW, the bad guys failed, because of valiant work by the good guys here in Cambridge, at Akamai!).

 

The threat was so bad that DHS’s National Cyber Awareness System sent out the first bulletin I ever remember getting from them dealing specifically with IoT devices. As it warned, “IoT devices are particularly susceptible to malware, so protecting these devices and connected hardware is critical to protect systems and networks.”  By way of further explanation, DHS showed how ridiculously simple the attacks were because of inadequate protection:

“The Mirai bot uses a short list of 62 common default usernames and passwords to scan for vulnerable devices. Because many IoT devices are unsecured or weakly secured, this short dictionary allows the bot to access hundreds of thousands of devices. The purported Mirai author claimed that over 380,000 IoT devices  (my emphasis) were enslaved by the Mirai malware in the attack on Krebs’ website.”

A later attack in France during September using Mirai resulted in the largest DDoS attack ever.

The IoT devices affected in the latest Mirai incidents were primarily home routers, network-enabled cameras, and digital video recorders. Mirai malware source code was published online at the end of September, opening the door to more widespread use of the code to create other DDoS attacks.

How’d they do it?

By a feature of the malware that detects and attacks consumer IoT devices that only have default, sometimes hardwired, passwords and usernames (or, as Dark Reading put it in an apocalyptic sub-head, “Mirai malware could signal the beginning of new trend in using Internet of Things devices as bots for DDoS attacks.”

To place the blame closer to home (well, more accurately, in the home!) you and I, if we bought cheap smart thermostats or baby monitors with minimal or no privacy protections and didn’t bother to set up custom passwords, may have unwittingly participated in the attack. Got your attention yet?

 

No responsible IoT inventor or company can deny it any longer: the entire industry is at risk unless corporate users and the general public can be confident that privacy and security are baked in and continuously upgraded. Please watch the HBR webinar if you haven’t already, and pledge to make IoT privacy and security Job #1!


 

PS: According to the DHS bulletin:

“In early October, Krebs on Security reported on a separate malware family responsible for other IoT botnet attacks. This other malware, whose source code is not yet public, is named Bashlite. This malware also infects systems through default usernames and passwords. Level 3 Communications, a security firm, indicated that the Bashlite botnet may have about one million (my emphasis) enslaved IoT devices.”

BTW: thanks for my friend Bob Weisberg for reminding me to give this situation its due!

comments: 6 » tags: , , ,

SmartAging Manifesto (draft): improve quality of aging & cut costs through IoT

What do you think constitutes “SmartAging?”

It’s been a while since I’ve posted anything about my IoT-based “SmartAging” concept, which combines:

  • Quantified Self health monitoring devices to make it easier to monitor your health conditions around the clock and help your caregivers better understand your health, and — hopefully — to motivate you to more activity and better eating.
  • smart home devices that make it easier to manage your home as you age and thereby avoid institutionalization.

However, I have been giving the concept a lot of thought, and have created a draft of a manifesto on the concept to guide my own work and hopefully provoke some discussion.  Here it is!

SmartAging Manifesto (draft)

  • Aging is a natural, lifelong process, so why fear and avoiding talking about it, especially how to make it more enjoyable and less costly?
  • We seniors aren’t all the same, so don’t treat us as if we were. Look beyond our wrinkles, and you’ll see some of us still work, some have just retired, and still others are long retired. When it comes to technology, some us us are afraid of it, some of us embrace it, and there are many others in the middle. Respect us for who we really are — and our choices.
  • We don’t want to have to work to master technology: we worked for 40 or 50 years, and now we want to enjoy ourselves. If you want to sell us technology, make it easy to learn and use. Maybe even fun…  Mark Weiser, credited as the IoT’s intellectual father, wrote that“The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” That sounds pretty good to us!
  • We want to shift gears and have more fun. That doesn’t mean shutting off our brains, but it does mean that we now have time to explore new hobbies, play games, spend time with our families (especially grandchildren), and travel. We’re particularly interested in technology that can help us do these things.
  • We’re also more concerned about our health. We want to be as healthy as possible, as long as possible, and we’re worried about debilitating illnesses and becoming dependent on others. We’ll be very interested in new devices to help us stay healthier longer — especially if it isn’t obvious we’re using them and they don’t make us look weird and pitiful.
  • We’re also concerned about independence (most of us do live independently, incidentally) and staying in our own homes instead of being carted off to some smelly, dehumanizing institution. We’re interested in technology that can make it easier to run our homes and stay in them.
  • We’re got something that kids don’t: wisdom and perspective, gathered from long lives and tough experience. Don’t just look at us as buyers of your stuff: ask us for our ideas. You may be surprised what you’ll learn.

That’s what I’ve got so far, but I wanted to circulate the draft ASAP, to gather others’ thoughts as well (I’ll credit you if you contribute any ideas!). e-mail me your ideas.

Liveblogging #IoT @ #Liveworx 2016 — day 2

Colin Angle, CEO, iRobot:

  • smart home: people have hard time learning how to use current generation of smart home devices. Unacceptable delay in activation. we need “just live your life, and the house does the right thing.” Shouldn’t have to pull out phone.  Will be aware of your location, act naturally.
  • “Need metaphor of the room to exist” — and robot will do that. Cool: Future iRobot could do that while doing its own job. New generation of iRobot has mapped 1/2 billion sq. feet in less than a year.
  • Would be a lot cooler if you can just buy a smart bulb, screw it in, and it would just work without having to do anything.
  • Pogue: how do you deal with the criticism that iRobot LOOKS as if it is cleaning randomly? Angle: Customers just cared that it actually did the job. “Just make it clean better” — I don’t care how long it takes, because I’m not there.
  • Next generation of robotics will be manipulation.
  • Angle: “if you’re worried about AI taking over, don’t worry about me, worry about the marketing guys.  … I just vacuum floors.”  This is so funny: “I used to be a self-respecting robot scientist, but it wasn’t until I became a vacuum salesman that I made any money.”

Eric Schaeffer, Accenture:

  • significant change, affecting both demand and supply. No industry unaffected.
  • to remain competitive, countries and companies will have to be at edge of innovation. Faster than ever.
  • strategies focused on cost-cutting less effective than emphasis on new products
  • World Economic Forum looking at impact of internet on business and society
    • 1st report: industrial internet of things & how it would transform industries. Adoption accelerating.
    • 3-4 yrs. from now, major structural changes, massively transformative (but you can begin w/ incremental change).
    • only 7% of 500 companies surveyed said they had comprehensive IoT strategy.
  • illustrations: water distribution network, dramatic time savings in time to install plane seats.
  • where’s the value? integrate smart products and back-office systems for IoT and As-a-Service Enabled approach.
  • Moving to multi-dimensional definition of a product.
  • Companies will become platforms
  • Sales models will move to as-a-service
  • They have identified 30% “uplift” for generic company. Specific improvements from digitization of the enterprise varies from one industry to another
  • Examples:
    • a Euro telecoms company: using a Google Glass-style product for field technicians at job sites and to capture data in field. 20-40% productivity gains.
    • pay-per-use vehicle services: a French tire company that wants to create 1 b Euro biz in “mobility.” — from selling tires to selling outcomes! Money-back guarantee. 2.5 liters reduction in gas use for 100 km driven — huge reduction in trucking companies. 
    • connected homes: working with multiple clients to define what the services will be.
  • Scope and scale of changes acute.
  • Recent survey: 42% of companies have said improvement has been in how they interact with customers.
  • Leading companies moving from product push to creating value by:
    • focusing on higher value solutions
    • focusing on enhanced experience
    • focusing on customer outcomes.
  • still focus on the what, but also the how!
  • dramatic shift to “Total Experience Innovation.”
    • Be Solution Centric: all centered on customer
    • Build an Insight Platform: continuously renew
    • Drive Pivotal Leaders: find right leaders.
  • Examples:
    • ALS patients: helping them regain control of their lives through wearables, displays, etc. done with Phillips.
    • industrial equipment manufacturer: breaking silos. Innovation digital factory: to instill connectivity into the biz, and build outcome-based offers, and increasing level of engagement with customers.
  • Future:
    • implantable technologies
    • wearable internet
    • IoT everywhere
    • connected home
    • driverless cars
    • robotics
    • sharing economy

Here’s the main event!  Prof. Michael Porter, iRobot’s Colin Angle & PTC’s Jim Heppelmann on IoT transformation:

  • Porter & Heppelmann’s research collaboration on IoT: he was a PTC board member. “Magical opportunity”
  • Porter: both products and internal operations are changing due to IoT
  • Porter: still in early stages of industrial conversion
  • Porter: IoT is wrong term: real emphasis is change in products and what they can do. Embedding in service companies. Every service business will be affected.
  • Heppelmann: the IoT also affects how the customer operates the product.
  • Angle: iRobot has jumped into IoT with both feet. Touches every aspect of their biz.
  • Heppelmann: missed the human element in this. That led to their AR initiative, so people could relate to the new products in ways that are both physical and digital.
  • Angle: iRoomba sending data back in real time on how it’s being used. No more focus groups! Robot part of design team.
  • Heppelmann: fundamentally different design process now.
  • Porter: who collects, who decides how to use the data? New chief data officer position.
  • Angle: who is best to handle the data? Idea of chief data officer interesting. Product ID a new competency.
  • Porter: starting to see new organizational structures pop up. Becoming possible to sell almost anything as a service.
  • Heppelmann: “devops” — combine development & operations. Chief Data Officer — whose job is it to decide what the data is telling various departments?
  • Porter: can’t have handoffs between each group, because you need continuing dialogue.
  • Heppelmann: industrial companies can learn from software companies, with techniques such as agile dev in software.  Continuous improvement. Also, “customer analytics.”

 

Zoe: perhaps even better than Echo as IoT killer device?

Zoe smart home hub

I’ve raved before about Echo, Amazon’s increasingly versatile smart home hub, primarily because it is voice activated, and thus can be used by anyone, regardless of tech smarts — or whether their hands are full of stuff.  As I’ve mentioned, voice control makes it a natural for my “SmartAging” concept to help improve seniors’ health and allow them to manage their homes, because you don’t have to understand the underlying technology — just talk.

Now there’s a challenger on the horizon: start-up Zoe, which offers many of Echo’s uses, but with an important difference that’s increasingly relevant as IoT security and privacy challenges mount: your data will remain securely in your home. Or, as their slogan goes:

“So far, smart home meant high convenience, no privacy, or privacy, but no fun. We are empowering you to have both.”

You can still get in on Zoe’s Indegogo campaign with a $249 contribution, which will get you a hub and an extra “voice drop” to use in another room, or the base level, $169 for a single room. Looks kinda cool to me, especially with the easily changed “Art Covers” and backlight coloring (the Che Guevera one looks appropriate for a revolutionary product) …  The product will ship in late 2016.

Don’t get me wrong: I love Echo & will be getting mine soon, but there is that creepy factor given government officials’ fascination with the potential of tapping into smart home data as part of their surveillance. Remember what US Director of Intelligence James Clapper said, ““In the future, intelligence services might use the [internet of things] for identification, surveillance, monitoring, location tracking, and targeting for recruitment, or to gain access to networks or user credentials.” Consider then, that Echo sits there on your kitchen counter, potentially hacked and then hoovering up all of your kitchen chit-chat to relay directly to the spooks.  Wouldn’t you rather that data remained totally under your control?

In addition to storing the data on site rather than in the cloud, Zoe also touts that it has advanced voice-recognition so it can learn IFTTT-style “recipes,” or be operated by apps. She comes with 1,500 built-in voice commands, or, if you stump her, (and only if you choose to, preserving that in-house-only option) web-based Advanced Voice Recognition steps in, with a cloud-based voice recognition system. Her recognition capabilities will grow over time.. Zoe will work with WiFi, Bluetooth, Z-Wave, and other standards.

The company will ship the developers’ kit in six months. It will be open source.

Not being cloud based will mean it loses to Echo on two important counts. For many people, the ability to order things from Amazon simply by speaking may be more important than security concerns,. Also, I notice it doesn’t mention any speakers, so it may be lacking the ability to also serve as a music source (obviously it wouldn’t work with Amazon Music or Apple Music if it isn’t cloud-connected, but it would at least be nice to be able to use it to play your own collection — advantage to Echo on that one.

At least this means there’s competition in the field (and, BTW, I’d love to see Apple swoop in and make THE voice-activated device!)


BTW: Thanks to good buddy Bob Weisberg for the tip about Zoe! Follow him!

 

Even More Reason to Boost Internet of Things Security: Feds Spying

As if there wasn’t already enough reason to make privacy and security your top IoT priority (see what I wrote earlier this week), now there’s more evidence Uncle Sam may be accessing your IoT data as part of its overall surveillance efforts (MEMO to NSA Director: we notice the lights at the Stephenson household went on precisely at sunset. Was that a signal to launch Operation Dreadful Winter?).

The Guardian reports that US. Director of National Intelligence James Clapper told the Senate:

“In the future, intelligence services might use the [internet of things] for identification, surveillance, monitoring, location tracking, and targeting for recruitment, or to gain access to networks or user credentials.”

Shades of former CIA Director David Petraeus, who I noted several years ago was also enamored of smart homes as the motherlode for snooping:

“‘Transformational’ is an overused word, but I do believe it properly applies to these technologies,’ Petraeus enthused, ‘particularly to their effect on clandestine tradecraft.’ All those new online devices are a treasure trove of data if you’re a ‘person of interest’ to the spy community. Once upon a time, spies had to place a bug in your chandelier to hear your conversation. With the rise of the ‘smart home,’ you’d be sending tagged, geolocated data that a spy agency can intercept in real time when you use the lighting app on your phone to adjust your living room’s ambiance. ‘Items of interest will be located, identified, monitored, and remotely controlled through technologies such as radio-frequency identification, sensor networks, tiny embedded servers, and energy harvesters — all connected to the next-generation internet using abundant, low-cost, and high-power computing,’ Petraeus said, ‘the latter now going to cloud computing, in many areas greater and greater supercomputing, and, ultimately, heading to quantum computing.’ Petraeus allowed that these household spy devices ‘change our notions of secrecy’ and prompt a rethink of’ ‘our notions of identity and secrecy.’”

Yikes!

Gathering data on spies, terrorists and other malefactors is always such a double-edged sword: I’m generally in favor of it if there’s demonstrable, objective proof they should be under surveillance (hey, I went to school with uber-spy Aldrich Ames!) but if and when the NSA and CSA start hoovering up gigantic amounts of data on our homes — and, even more questionably, our bodies [though Quantified Self devices] then we’ve got to make certain that privacy and security protections are designed in and tough, and that there is some sort of effective civilian oversight to avoid gratuitous dragnets and trump(ooh, gotta retire that word from my vocabulary)ed up surveillance.

Big Brother is watching … your thermostat!

No Debate: Protecting Privacy and Security Is 1st Internet of Things Priority

This just in: your Internet of Things strategy will fail unless you make data privacy and security the absolute highest priority.

I didn’t always think that way.

Long-time readers know one of my favorite themes is what I call the IoT “Essential Truths,” the key priorities and attitudinal shifts that must be at the heart of all IoT strategies. I’ve always ranked privacy and security the last on the list:

  1. Share Data (instead of hoarding it, as in the past)
  2. Close the Loop (feed that data back so there are no loose ends, and devices become self-regulating:
  3. Redesign Products so they will contain sensors to feed back data about the products’ real-time status, and/or can now be marketed not as products that are simply sold, but services that both provide additional benefits to customers while also creating new revenue streams for the manufacturer.
  4. Make Privacy and Security the Highest Priority, because of the dangers to customers if personal or corporate data becomes available, and because loss of trust will undermine the IoT.

No longer.

I’ve reversed the order: privacy & security must be the precondition for anything else you do with the IoT, because their absence can undermine all your creativity.

      Newsweek article about Shodan

Newsweek article about Shodan

The specific incident that sparked this reordering of priorities was a recent spate of articles about how Shodan (in mid-2013 I blogged about the dangers of having IoT data show up there — did you pay attention??) — the “search engine for the Internet of Things” — had recently added a new feature that makes it easy-peasy to search unsecured webcams for video of everything from sleeping babies to marijuana farms. According to CNBC:

“‘Shodan has started to grab screenshots for various services where the existing text information didn’t provide much information,’ founder John Matherly wrote in an email. ‘This was launched in August 2015 and the various sources for screenshots have expanded since then — one of those recent additions is for webcams.'”

I’ve written before that I feel particularly strongly about this issue because, unlike engineers who are hell-bent on getting their IoT products and services to market ASAP and at as little cost as possible, I have an extensive background before my IoT days as a crisis management consultant to Fortune 100 companies that had screwed up big time, l0st public trust, and now had to earn it back. As a result, I see IoT privacy and security threats differently.

As I’ve said, a lot of engineers — as left-brained and analytical as I am right-brained and intuitive — simply don’t understand factors such as the fear parents feel when their sleeping babies can be seen anywhere and creeps can yell obscenities at them. After all, fear isn’t factual, its emotional. However, that can no longer be an excuse.

No more Mr. Nice Guy! you must make privacy and security a priority on the first day you brainstorm your new IoT product or service, or you risk losing everything.

As cyber-security expert Paul Roberts says:

“The Internet of Things means that the impact of cyber attacks will now be felt in the physical world and the cost of failing to security IoT endpoints could be measured in human lives, not simply zeroes and ones.
“Like any land grab, the rush to own a piece of the Internet of Things is chaotic and characterized by the trampling of more than a few treasured and valued principles: privacy, security, accountability. As companies clamor to develop the next Nest Thermostat or simply to whitewash aging gear with a web interface and companion mobile app, they’re conveniently forgetting the lessons of the past two decades.”
The key is “security by design.”As Gulio Corragio puts it:
“the principle of data protection by design requires data protection to be embedded within the entire life cycle of the technology, from the very early design stage, right through to its ultimate deployment, use and final disposal. This should also include the responsibility for the products and services used by the controller or processor….
The benefits include:
  • “limit the risk that Internet of Things devices are deemed not compliant with privacy laws avoiding sanctions that under the new EU Privacy Regulation will reach 5% of the global turnover;
  • reducing the potential liabilities deriving from cybercrimes since data breaches have to be reported to privacy regulators only if the data controller is unable to prove to have adopted the security measures adequate to the data processing and
  • exclude liabilities in case of processing of data that are not necessary for the provision of the service also through the usage of anonymization techniques which is relevant especially for B2B suppliers that have no relationship with final users.”

Privacy and security are never-ending requirements for the IoT, because the threats will continue to evolve. Making it a priority from the beginning will reduce the challenge.


I’ll speak on this subject at SAP’s  IoT 2016 Conference, Feb. 16-19, in Las Vegas.