Will some smart home device makers ever grow souls??

(Please cut me a little slack on this post, dripping with sarcasm: these latest examples of some smart home device makers’ contempt/obliviousness toward customers’ privacy and security shoved me over the edge!).

Once upon a time two smart boys in their dorm room thought up a new service that really made a new technology hum. When they turned it into a tiny company, they ever adopted a cute motto: “don’t be evil.” Neat!

Then their little service got very, very big and very, very profitable. The motto? It kinda withered away. Last year it was even dropped from the company’s code of conduct.

Which, conveniently, allowed that once tiny company to produce this abomination: the Google Nest Guard (the alarm, keypad, and motion sensor portion of Nest’s Secure home protection system) featuring a mic.

Oh, did I point out that Nest didn’t mention the mic’s presence? No, that fact only emerged when it announced the Guard’s integration with Google’s Assistant voice device (Sample command: “OK, Google, surveil my family.”) and Business Insider ferreted out the mic’s presence:

“The existence of a microphone on the Nest Guard, which is the alarm, keypad, and motion-sensor component in the Nest Secure offering, was never disclosed in any of the product material for the device.”

On Tuesday, a Google spokesperson told Business Insider the company had made an “error.”

“The on-device microphone was never intended to be a secret and should have been listed in the tech specs,” the spokesperson said. “That was an error on our part.”

Oh. All is forgiven. It was just an “error on our part.”

Except, how can I say this politely?, that’s utter baloney. It seems as if the mic just sorta got there. No engineer suggested adding it. No executives reviewing the design conveniently overlooked it.

Nope, that mic was there intentionally, and Google is so morally corrupt and/or amoral that they simply chose to ignore telling the public.

And, while we’re at it, let’s not heap all the opprobrium on Google. Amazon subsidiary Ring actually let its employees view videos shot with its doorbell device:

“These videos were unencrypted, and could be easily downloaded and shared. The team was also given a database that linked each video to the Ring customer it belonged to.”

As I’ve said many times before, my perspective on the issues of privacy and security are informed by my prior work in corporate crisis management, which taught me that far too many engineers (I have many friends in the profession, but if the shoe fits, wear it) are simply oblivious to privacy and security issues, viewing them as something to be handled through bolt-on protections after the fun part of product design is done. In fact, in adding the prior link, I came across something I wrote last year in which I quoted from the Google log — which contained nary a mention of privacy concerns — about an aspect of AI that would allow identification of what shop a batch of ramen came from. Funny, huh? No — scary.

Another lesson I drew from my past was the phenomenon of guilt by association, which is incredibly rampant right now: people conflate issues as diverse as smart home privacy violations, Russian election tampering, some men’s inability to find dates (I kid you not, and the result may be lethal for some women), the so-called “deep state,” etc., etc. The engineers I know tend to dismiss these wacky ideas because they aren’t logical. But the fact that the fears aren’t logical doesn’t mean they aren’t very, very real to those who embrace them.

That means that even those companies whose smart home devices DO contain robust privacy protections risk people rejecting their devices as well. Trust me on this one: I work every day with rational people who reject the cloud and all the services that could enrich their lives due to their fear of privacy and security violations.

That’s why responsible IoT companies must become involved in collaborations such as the Internet of Things Association, and IMC, working on collaborative strategies to deal with these issues.

Let’s not forget that these gaffes come at the same time as there’s a lot more interest among regulators and elected officials in regulating and/or even breaking up the Silicon Alley behemoths. You’d kinda think they’d be on their best behavior, not doing stupid things that just draw more criticism.

I’m fed up, and I won’t shut up. Write me if you have feasible suggestions to deal with the problem.

IMPORTANT POSTSCRIPT!

I just discovered a Verge piece from last month to the effect that Google is belatedly getting religion about personal privacy, even — and this wins big points in my book — putting its privacy policies in plain English (yes!) rather than legalese. Here’s a long piece from the article. If they follow up, I’d be the first to praise them and withdraw my criticism, although not of the industry as a whole:

“So today, as Google announced that it’s going to sell a device that’s not all that different from the Facebook Portal, whose most every review wondered whether you should really invite a Facebook camera into your home, Google also decided to publicly take ownership for privacy going forward.
As we discovered in our interview with Google Nest leader Rishi Chandra, Google has created a set of plain-English privacy commitments. And while Google didn’t actually share them during today’s Google I/O keynote, they’re now available for you to read on the web.
Here’s the high-level overview:
We’ll explain our sensors and how they work. The technical specifications for our connected home devices will list all audio, video, and environmental and activity sensors—whether enabled or not. And you can find the types of data these sensors collect and how that data is used in various features in our dedicated help center page.
We’ll explain how your video footage, audio recordings, and home environment sensor readings are used to offer helpful features and services, and our commitment for how we’ll keep this data separate from advertising and ad personalization.
We’ll explain how you can control and manage your data, such as providing you with the ability to access, review, and delete audio and video stored with your Google Account at any time.
But the full document gets way more specific than that. And remarkably, a number of the promises aren’t the typical wishy-washy legalese you might expect. Some are totally unambiguous. Some of them go against the grain, like how Nest won’t let you turn off the recording light on your camera anymore because it wants to assure you!
‘Your home is a special place. It’s where you get to decide who you invite in. It‘s the place for sharing family recipes and watching babies take first steps. You want to trust the things you bring into your home. And we’re committed to earning that trust,’ Google says.”

Maybe somebody’s listening!

LifePod: could voice-powered devices change aging?

It’s been a while since I’ve addressed my concept of “SmartAging,” which combines “Quantified Self” health devices that can improve seniors’ health and transform their relationship to their doctors into more of a partnership, and smart home devices that help people manage their homes more easily as they age.

Since I’m nearing my 74th birthday next week, LOL, it seemed an appropriate time to return to the meme.

What triggered my interest was LifePod, a new desktop device similar to an Amazon Echo or Google Assistant, which also is available separately as a platform that can be used on either of those devices or an Apple HomePod.

LifePod

It reminds me of my only slightly tongue-in-cheek post last year about the SNL Amazon/AARP Echo “Silver Edition,” which was aimed at the Greatest Generation and offered features such as shouting, instead of speaking to you, and answering to 250 or so names that had something in common with Alexa, LOL. As I’ve found in my 5+ years of explaining advanced tech to seniors, especially those older than 80 who may have never encountered it in the workplace, there was an element of truth in the SNL “ad”: voice really could be the killer input device, because you don’t have understand the underlying technology — you just have to speak the relevant command.

In fact, I read a piece this morning quoting a leading venture capitalist who predicted that keyboards as an input device will become a quaint relic in the next five years, and that voice “is the opportunity of the decade.” I became a believer eight years ago, when I was writing Data Dynamite, and, facing a bad case of writer’s block, ended up dictating the first draft using Dragon Dictate!

LifePod is a second-generation voice device, built on the abilities of devices such as the Echo, which is billed as a “voice-controlled virtual caregiver, companion and digital assistant.” It adds a significant component beyond what those devices offer: users no longer have to use the prompts such as “Hey, Siri,” or “Alexa,” to “wake” it (don’t know about you, but on occasion I’ve been known to summon one or the other of those gals using the wrong name — sometimes on purpose to see what “she” will answer, LOL).

“Instead, it will start conversations with the elderly user based on 5 preset schedules (wake-up, morning, afternoon, evening, and bedtime) created by an adult child or other remote caregiver. This can be particularly valuable for early-stage dementia patients who may simply forget key actions such as taking a morning pill or staying hydrated.

Equally important is the role the LifePod can play in dealing with a critical problem for house-bound seniors, social isolation, which is increasingly seen as a crucial factor in aging. Among other things, it can offer them “.. quizzes, health and nutrition info, games, music, audiobooks, jokes, history and trivia, and social networking” that provoke interaction.

The company says that LifePod will incorporate AI that will recognize deviations in factors such as sleep patterns and physical activity, then automatically alert their caregivers.

Macadamian, which collaborated in the platform’s creation, said that future offerings that leverage digital links that in the future mean that:

“LifePod could be integrated with personal hygiene devices like connected toothbrushes, or motion detectors to better track the actions of the user and increase their safety or further assist them in the home. It could also integrate with medical devices like blood pressure monitors, glucose meters, or sleep trackers to track the user’s health in correlation to the other data and include it in the daily reports or use it to trigger alerts.”

In the past I’ve ranted that seniors don’t want to be stigmatized by alert devices hanging around their necks that scream “I’m elderly, pity me.” LifePod, a cool device sitting on their kitchen tables or as a service added to their existing Echo or Home device, are just what the doctor ordered.

comments: Closed

“All of Us:” THE model for IoT privacy and security!

pardon me in advance:this will be long, but I think the topic merits it!

One of my fav bits of strategic folk wisdom (in fact, a consistent theme in my Data Dynamite book on the open data paradigm shift) is, when you face a new problem, to think of another organization that might have one similar to yours, but which suffers from it to the nth degree (in some cases, even a matter of literal life-or-death!).

That’s on the likelihood that the severity of their situation would have led these organizations to already explore radical and innovative solutions that might guide your and shorten the process. In the case of the IoT, that would include jet turbine manufacturers and off-shore oil rigs, for example.

I raise that point because of the ever-present problem of IoT privacy and security. I’ve consistently criticized many companies’ lack of attention to seriousness and ingenuity, and warned that this could result not only in disaster for these companies, but also the industry in general due to guilt-by-association.

This is even more of an issue since the May roll-out of the EU’s General Data Protection Regulation (GDPR), based on the presumption of an individual right to privacy.

Now, I have exciting confirmation — from the actions of an organization with just such a high-stakes privacy and security challenge — that it is possible to design an imaginative and effective process alerting the public to the high stakes and providing a thorough process to both reassure them and enroll them in the process.

Informed consent at its best!

It’s the NIH-funded All of Us, a bold effort to recruit 1 million or more people of every age, sex, race, home state, and state of health nationwide to speed medical research, especially toward the goal of “personalized medicine.” The researchers hope that, “By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward delivering precision medicine.”

All of Us should be of great interest to IoT practitioners, starting with the fact that it might just save our own lives by leading to creation of new medicines (hope you’ll join me in signing up!). In addition, it parallels the IoT in allowing unprecedented degrees of precision in individuals’ care, just as the IoT does with manufacturing, operating data, etc.:

“Precision medicine is an approach to disease treatment and prevention that seeks to maximize effectiveness by taking into account individual variability in genes, environment, and lifestyle. Precision medicine seeks to redefine our understanding of disease onset and progression, treatment response, and health outcomes through the more precise measurement of molecular, environmental, and behavioral factors that contribute to health and disease. This understanding will lead to more accurate diagnoses, more rational disease prevention strategies, better treatment selection, and the development of novel therapies. Coincident with advancing the science of medicine is a changing culture of medical practice and medical research that engages individuals as active partners – not just as patients or research subjects. We believe the combination of a highly engaged population and rich biological, health, behavioral, and environmental data will usher in a new and more effective era of American healthcare.” (my emphasis added)


But what really struck me about All of Us’s relevance to IoT is the absolutely critical need to do everything possible to assure the confidentiality of participants’ data, starting with HIPP protections and extending to the fact that it would absolutely destroy public confidence in the program if the data were to be stolen or otherwise compromised.  As Katie Rush, who heads the project’s communications team told me, “We felt it was important for people to have a solid understanding of what participation in the program entails—so that through the consent process, they were fully informed.”

What the All of Us staff designed was, in my estimation (and I’ve been in or around medical communication for forty years), the gold standard for such processes, and a great model for effective IoT informed consent:

  • you can’t ignore it and still participate in the program: you must sign the consent form.
  • you also can’t short-circuit the process: it said at the beginning the process would take 18-30 minutes (to which I said yeah, sure — I was just going to sign the form and get going), and it really did, because you had to do each step or you couldn’t join — the site was designed so no shortcuts were allowed!:
    • first, there’s an easy-to-follow, attractive short animation about that section of the program
    • then you have to answer some basic questions to demonstrate that you understand the implications.
    • then you have to give your consent to that portion of the program
    • the same process is repeated for each component of the program.
  • all of the steps, and all of the key provisions, are explained in clear, simple English, not legalese. To wit:
    • “Personal information, like your name, address, and other things that easily identify participants will be removed from all data.
    • Samples—also without any names on them—are stored in a secure biobank”
    • “We require All of Us Research Program partner organizations to show that they can meet strict data security standards before they may collect, transfer, or store information from participants.
    • We encrypt all participant data. We also remove obvious identifiers from data used for research. This means names, addresses, and other identifying information is separate from the health information.
    • We require researchers seeking access to All of Us Research Program data to first register with the program, take our ethics training, and agree to a code of conduct for responsible data use.
    • We make data available on a secure platform—the All of Us research portal—and track the activity of all researchers who use it.
    • We enlist independent reviewers to check our plans and test our systems on an ongoing basis to make sure we have effective security controls in place, responsive to emerging threats.”

The site emphasizes that everything possible will be done to protect your privacy and anonymity, but it is also frank that there is no way of removing all risk, and your final consent requires acknowledging that you understand those limits:

“We are working with top privacy experts and using highly-advanced security tools to keep your data safe. We have several  steps in place to protect your data. First, the data we collet from you will be stored on=oyters with extra security portection. A special team will have clearance to process and track your data. We will limit who is allowed to see information that could directly identy you, like your name or social security number. In the unlikely event of a data breach, we will notify you. You are our partner, and your privacy will always be our top priority.”

The process is thorough, easy to understand, and assures that those who actually sign up know exactly what’s expected from them, what will be done to protect them, and that they may still have some risk.

Why can’t we expect that all IoT product manufacturers will give us a streamlined version of the same process? 


I will be developing consulting services to advise companies that want to develop common-sense, effective, easy-to-implement IoT privacy and security measures. Write me if you’d like to know more.

Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels

Right after I submitted my final manuscript for The Future is Smart I had a chance to spend an hour with old friend Jason Daniels (we collaborated on a series of “21st Century Homeland Security Tips You Won’t Hear From Officials” videos back when I was a homeland security theorist) on his “Studio @ 50 Oliver” podcast.

We covered just about every topic I hit in the book, with a heavy emphasis on the attitude shifts (“IoT Essential Truths” needed to really capitalize on the IoT and the bleeding-edge concept I introduce at the end of the book, the “Circular Corporation,” with departments and individuals (even including your supply chain, distribution network and customers, if you choose) in a continuous, circular management style revolving around a shared real-time IoT hub.  Hope you’ll enjoy it!

comments: Comments Off on Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels tags: , , , , , ,

IoT Design Manifesto 1.0: great starting point for your IoT strategy & products!

Late in the process of writing my forthcoming IoT strategy book, The Future Is Smart, I happened on the “IoT Design Manifesto 1.0” site. I wish I’d found it earlier so I could have featured it more prominently in the book.

The reason is that the manifesto is the product (bear in mind that the original team of participants designed it to be dynamic and iterative, so it will doubtlessly change over time) of a collaborative process involving both product designers and IoT thought leaders such as the great Rob van Kranenburg. As I’ve written ad nauseam, I think of the IoT as inherently collaborative, since sharing data rather than hoarding it can lead to synergistic benefits, and collaborative approaches such as smart cities get their strength from an evolving mishmash of individual actions that gets progressively more valuable.

From the names, I suspect most of the Manifesto’s authors are European. That’s important, since Europeans seem to be more concerned, on the whole, about IoT privacy and security than their American counterparts, witness the EU-driven “privacy by design” concept, which makes privacy a priority from the beginning of the design process.

At any rate, I was impressed that the manifesto combines both philosophical and economic priorities, and does so in a way that should maximize the benefits and minimize the problems.

I’m going to take the liberty of including the entire manifesto, with my side comments:

  1. WE DON’T BELIEVE THE HYPE. We pledge to be skeptical of the cult of the new — just slapping the Internet onto a product isn’t the answer, Monetizing only through connectivity rarely guarantees sustainable commercial success.
    (Comment: this is like my “just because you can do it doesn’t mean you should” warning: if making a product “smart” doesn’t add real value, why do it?)*
  2. WE DESIGN USEFUL THINGS. Value comes from products that are purposeful. Our commitment is to design products that have a meaningful impact on people’s lives; IoT technologies are merely tools to enable that.
    (Comment: see number 1!)
  3. “WE AIM FOR THE WIN-WIN-WIN. A complex web of stakeholders is forming around IoT products: from users, to businesses, and everyone in between. We design so that there is a win for everybody in this elaborate exchange.
    (Comment:This is a big one in my mind, and relates to my IoT Essential Truth #2 — share data, don’t hoard it — when you share IoT data, even with competitors in some cases [think of IFTTT “recipes”] — you can create services that benefit customers, companies, and even the greater good, such as reducing global warming).
  4. WE KEEP EVERYONE AND EVERYTHING SECURE. With connectivity comes the potential for external security threats executed through the product itself, which comes with serious consequences. We are committed to protecting our users from these dangers, whatever they may be.
    (Comment: Amen! as I’ve written ad nauseum, protecting privacy and security must be THE highest IoT priority — see next post below!).
  5. WE BUILD AND PROMOTE A CULTURE OF PRIVACY. Equally severe threats can also come from within. Trust is violated when personal  information gathered by the product is handled carelessly. We build and promote a culture of integrity where the norm is to handle data with care.
    (Comment:See 4!).
  6. WE ARE DELIBERATE ABOUT WHAT DATA WE COLLECT. This is not the business of hoarding data; we only collect data that serves the utility of the product and service. Therefore, identifying what those data points are must be conscientious and deliberate.
    (Comment: this is a delicate issue, because you may find data that wasn’t originally valuable becomes so as new correlations and links are established. However, just collecting data willy-nilly and depositing it in an unstructured “data lake” for possible use later is asking for trouble if your security is breeched.).
  7. WE MAKE THE PARTIES ASSOCIATED WITH AN IOT PRODUCT EXPLICIT. IoT products are uniquely connected, making the flow of information among stakeholders open and fluid. This results in a complex, ambiguous, and invisible network. Our responsibility is to make the dynamics among those parties more visible and understandable to everyone.
    (Comment: see what I wrote in the last post, where I recommended companies spell out their privacy and usage policies in plain language and completely).
  8. WE EMPOWER USERS TO BE THE MASTERS OF THEIR OWN DOMAIN. Users often do not have control over their role within the network of stakeholders surrounding an IoT product. We believe that users should be empowered to set the boundaries of how their data is accessed and how they are engaged with via the product.
    (Comment: consistent with prior points, make sure that any permissions are explicit and  opt-in rather than opt-out to protect users — and yourself (rather avoid lawsuits? Thought so…)
  9. WE DESIGN THINGS FOR THEIR LIFETIME. Currently physical products and digital services tend to be built to have different lifespans. In an IoT product features are codependent, so lifespans need to be aligned. We design products and their services to be bound as a single, durable entity.
    (Comment: consistent with the emerging circular economy concept, this can be a win-win-win for you, your customer and the environment. Products that don’t become obsolete quickly but can be upgraded either by hardware or software will delight customers and build their loyalty [remember that if you continue to meet their needs and desires, there’s less incentive for customers to check out competitors and possibly be wooed away!). Products that you enhance over time and particularly those you market as services instead of sell will also stay out of landfills and reduce your pduction costs.
  10. IN THE END, WE ARE HUMAN BEINGS. Design is an impactful act. With our work, we have the power to affect relationships between people and technology, as well as among people.  We don’t use this influence to only make profits or create robot overlords; instead, it is our responsibility to use design to help people, communities, and societies  thrive.
    Comment: yea designers!!)

I’ve personally signed onto the Manifesto, and do hope to contribute in the future (would like something explicit about the environment in it, but who knows) and urge you to do the same. More important, why start from scratch to come up with your own product design guidelines, when you can capitalize on the hard work that’s gone into the Manifesto as a starting point and modify it for your own unique needs?


*BTW: I was contemptuous of the first IoT electric toothbrush I wrote about, but since talked to a leader in the field who convinced me that it could actually revolutionize the practice of dentistry for the better by providing objective proof that  patient had brushed frequently and correctly. My bad!

comments: Comments Off on IoT Design Manifesto 1.0: great starting point for your IoT strategy & products! tags: , , , , ,

Apple Watch 85% Accuracy in Detecting Diabetes May Be Precursor of Early Diagnoses

Permit me to (re-)introduce myself, LOL.

I haven’t posted since the end of October, because I was totally absorbed in writing The Future is Smart, my book about IoT strategy, which will be released in August by AMACOM, the publishing wing of the American Management Association. A major theme of the book is that the IoT lifts what I term the condition of  “Collective Blindness” that used to plague us before the advent of real-time data from sensors and the analytical software to interpret that data. Collective Blindness meant that we were frequently operating in figurative darkness, having to guess about how things worked or didn’t without direct observational data, which meant that we frequently didn’t learn about problems inside things until after the fact, which could mean costly (and sometimes fatal) corrective maintenance was all that was possible.

Those “things” unfortunately included the human body.

Usually the only way to uncover a problem inside our bodies pre-IoT was through costly pre-arranged tests at the doctor’s or a hospital. They could only provide a snapshot in time, documenting your body’s state at that precise moment (when, after all, you might be flat on your back wearing a johnny — not exactly representative of your actual condition as you go about your daily routine!). If you had no complaint warranting such a test, the condition might go undiagnosed until it was significantly worse (remember the contrast between prompt predictive maintenance of a jet turbine and costly emergency repairs when a disaster loomed?).

That’s why the news from Brandon Ballinger, the Google alum who was co-founder of the Cardiogram app (get it! I did! and I joined their Artificial Intelligence-driven Health eHeart Study as well!) is so important. In a clinical study released last week, the research team found that the Apple Watch is 85% accurate in detecting diabetes in those previously diagnosed with the disease. The paper was presented at the AAAI Conference on Artificial Intelligence last week in New Orleans.

Results from heart monitoring with Apple Watch and Cardiogram app

The study analyzed data from 14,000 Apple Watch users, finding that 462 participants through the heart rate sensor, the same type of sensor.

The investigation tested a 2015 finding by our famous local Framingham Heart Study that resting heart rate and heart rate variability significantly predicted incident diabetes and hypertension.

According to TechCrunch,  Ballinger’s team had previously used the Watch “to detect an abnormal heart rhythm with up to a 97 percent accuracy, sleep apnea with a 90 percent accuracy and hypertension with an 82 percent accuracy when paired with Cardiogram’s AI-based algorithm.”

This is important for several reasons.

We’ve read for several years about single-purpose devices that might be able to diagnose diabetes and determine the need for insulin without painful pinpricks, but the Cardiograph research might show that simply harvesting enough data with a multi-purpose fitness device such as the Watch and being able to interpret it creatively with Artificial Intelligence would be enough. That’s the logical next step with the Health eHeart Study.

It reminds me of the example I’ve mentioned several times before of neonatologists from Toronto’s Hospital for Sick Children and IBM data scientists combining to analyze the huge amount of sensor data harvested from preemies’ bassinettes and being able to diagnose a potentially-lethal neonatal sepsis infection a full day before any visible sign of the infection.

Given these two examples, one must ask, how many other health problems might be diagnosed in their earliest stages, which cures are most likely and least expensive, if routine monitoring through devices such as the Apple Watch become commonplace and the results are crunched with AI? In particular, this could be a key part of my SmartAging concept.

Exciting!

 

NB: I work part-time for The Apple Store, but am not privy to any strategy or inside information. These opinions are purely my own as an Apple Watch user.

 

comments: Comments Off on Apple Watch 85% Accuracy in Detecting Diabetes May Be Precursor of Early Diagnoses tags: , , , , , , , ,

iQ handheld ultrasound: another game-changing IoT health device

As the Red Sox’ Joe Castiglione might say, “Can you believe it?” (I should add a few more question marks to underscore exactly how unbelievable this IoT device is).

That’s my reaction to the latest astounding IoT medical device, the iQ handheld ultrasound, which attaches to a smartphone.

I was mesmerized by the headline on a story about the Butterfly iQ: “Doctor says he diagnosed his own cancer with iPhone ultrasound machine.” (spoiler alert: he was operated on to remove the tumor, and is OK).

Then there’s the marketing pitch: “Whole body imaging. Under $2K.” (that’s as opposed to $115,000 for the average conventional machine).

Oh.

The video is a must watch: the doctors seem truly amazed by its versatility and ease-of-use — not to mention it can be accessed instantly in a life-or-death situation. As one is quoted saying, “This blows up the entire ultrasound playing field.”

It won’t be on the market until next year, but the FDA has already approved the iQ for diagnosis in 13 applications.  Even more amazing, due to advanced electronics, it uses a single probe instead of three, and can document conditions from the superficial to deep inside the body. The system fits in a pants pocket and simply attaches to the doctor’s smartphone.

As incredible as the iQ will be in the US, think of how it will probably bring ultrasound to developing nations worldwide for the first time!

Another video discusses the engineering, which reduced the entire bulky ultrasound machine to a far-less costly chip, (including a lot of signal processing and computational power) and capitalizes on technologies developed for consumer electronics. The approach doesn’t just equal the traditional piezioelectric technology, but surpasses it. with power that would cost more than $100,000 with a conventional machine.

In terms of manufacturing, Butterfly can use the same chip machines used to produce consumer goods such as smartphones, and can print nearly 100 ultrasound machines on less than one disk.

I thought instantly of my go-to “what can you do with the IoT that you couldn’t do before” device, the Kardia EKG on the back of my iPhone (I met a woman recently who said her Mass General cardiologist prescribes it for all of his patients). Both are absolute game changers, in terms of ease of access, lower cost, allowing on-the-spot monitoring and even potentially empowering patients (Yet another tool to make my SmartAging concept possible).

Oh, and did I mention that the iQ’s Artificial Intelligence will guide even inexperienced personnel to do high quality imaging within a few seconds?

Bottom line: if you talk to someone who doesn’t believe the IoT’s potential to make incredible changes in every aspect of our lives, just say: iQ. Wow!

comments: Comments Off on iQ handheld ultrasound: another game-changing IoT health device tags: , , , , , , , ,

Mycroft Brings Open-Source Revolution to Home Assistants

Brilliant!  Crowd-funded (even better!) Mycroft brings the rich potential of open-source to the growing field of digital home assistants.   I suspect it won’t be long until it claims a major part of the field, because the Mycroft platform can evolve and grow exponentially by capitalizing on the contributions of many, many people, not unlike the way IFTTT has with its crowd-sourced smart home “recipes.”

According to a fascinating ZD Net interview with its developer, Joshua Montgomery, his motivation was not profit per se, but to create a general AI intelligence system that would transform a start-up space he was re-developing:

“He wanted to create the type of artificial intelligence platform that ‘if you spoke to it when you walked in the room, it could control the music, control the lights, the doors’ and more.”

                         Mycroft

Montgomery wanted to do this through an open-source voice control system but for there wasn’t an open source equivalent to Siri or Alexa.  After building the natural language, open-source AI system to fill that need (tag line, “An Artificial Intelligence for Everyone”) he decided to build a “reference device” as the reporter terms it (gotta love that techno speak. In other words, a hardware device that could demonstrate the system). That in turn led to a crowdsourced campaign on Kickstarter and Backerkit to fund the home hub, which is based on the old chestnut of the IoT, Raspberry Pi. The result is a squat, cute (looks like a smiley face) unit, with a high-quality speaker.  

Most important, when the development team is done with the AI platform, Mycroft will release all of the Mycroft AI code under GPL V3, inviting the open-source community to capitalize and improve on it.  That will place Mycroft squarely in the open-source heritage of Linux and Mozilla.

Among other benefits, Mycroft will use natural language processing to activate a wide range of online services, from Netflix to Pandora, as well as control your smart home devices.

Mycroft illustrates one of my favorite IoT Essential Truths: we need to share data, not hoard it. I don’t care how brilliant your engineers are: they are only a tiny percentage of the world population, with only a limited amount of personal experience (especially if they’re callow millennials) and interests. When you go open source and throw your data open to the world, the progress will be greater as will be the benefits — to you and humanity.

comments: Comments Off on Mycroft Brings Open-Source Revolution to Home Assistants tags: , , , , ,

A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

I’ve been giving a lot of thought recently about how my vision of I0T-based “SmartAging” through a combination of:

  • Quantified Self health apps and devices to improve seniors’ health and turn their health care into more of a partnership with their doctors
  • and smart home devices that would make it easier to manage their homes and “age in place” rather than being institutionalized

could meld with the exciting developments in smart city devices and strategy.  I believe the results could make seniors happier and healthier, reduce the burdens on city budgets of growing aging populations, and spur unprecedented creativity and innovation on these issues. Here’s my vision of how the two might come together. I’d welcome your thoughts on the concept!

 

A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

It’s clear business as usual in dealing with aging in America won’t work anymore.  10,000 baby boomers a day retire and draw Social Security. Between now and 2050, seniors will be the fastest growing segment of the population.  How can we stretch government programs and private resources so seniors won’t be sickly and live in abject poverty, yet millennials won’t be bankrupted either?

As someone in that category, this is of more than passing interest to me! 

I propose a new approach to aging in cities, marrying advanced but affordable personal technology, new ways of thinking about aging, and hybrid formal and ad hoc public-private partnerships, which can deal with at least part of the aging issue. Carving out some seniors from needing services through self-reliance and enhancing their well-being would allow focusing scarce resources on the most vulnerable remaining seniors. 

The approach is made possible not only by the plummeting cost and increasing power of personal technology but also the exciting new forms of collaboration it has made possible.

The proposal’s basis is the Internet of Things (IoT).  There is already a growing range of IoT wearable devices to track health indicators such as heart rates and promoting fitness activities, and IoT “smart home” devices controlling lighting, heat, and other systems. The framework visualized here would easily integrate these devices, but they can be expensive, so it is designed so seniors could benefit from the project without having to buy the dedicated devices.

This proposal does not attempt to be an all-encompassing solution to every issue of aging, but instead will create a robust, open platform that government agencies, companies, civic groups, and individuals can build upon to reduce burdens on individual seniors, improve their health and quality of life, and cut the cost of and need for some government services. Even better, the same platform and technologies can be used to enhance the lives of others throughout the life spectrum as well, increasing its value and versatility.

The proposal is for two complementary projects to create a basis for later, more ambitious one.

Each would be valuable in its own right and perhaps reach differing portions of the senior population. Combined, they would provide seniors and their families with a wealth of real-time information to improve health, mobility, and quality of life, while cutting their living costs and reducing social isolation.  The result would be a mutually-beneficial public-private partnerships and, one hopes, improve not only seniors’ lives, but also their feeling of connectedness to the broader community. Rather than treat seniors as passive recipients of services, it would empower them to be as self-reliant as possible given their varying circumstances. They would both be based on the Lifeline program in Massachusetts (and similar ones elsewhere) that give low-income residents basic Internet service at low cost.

Locally, Boston already has a record of achievement in internet-based services to connect seniors with others, starting with the simple and tremendously effective SnowCrew program that Joe Porcelli launched in the Jamaica Plain neighborhood. This later expanded nationwide into the NextDoor site and app, which could easily be used by participants in the program.

The first project would capitalize on the widespread popularity of the new digital “home assistants,” such as the Amazon Echo and Google Home.  One version of the Echo can be bought for as little as $49, with bulk buying also possible.  A critical advantage of these devices, rather than home monitoring devices specifically for seniors, is that they are mainstream, benefit from the “network effects” phenomenon that means each becomes more valuable as more are in use, and don’t stigmatize the users or shout I’M ELDERLY. A person who is in their 50s could buy one now, use it for routine household needs, and then add additional age-related functions (see below) as they age, amortizing the cost.

The most important thing to remember about these devices regarding aging is the fact that they are voice-activated, so they would be especially attractive to seniors who are tech-averse or simply unable to navigate complex devices. The user simply speaks a command to activate the device.

The Echo (one presumes a variation on the same theme will soon be the case with the “Home,” Apple’s forthcoming “Home Pod” and other devices that might enter the space in the future) gets its power from “skills,” or apps, that are developed by third-party developers. They give it the power, via voice, to deliver a wide range of content on every topic under the sun.  Several already released “skills” give an idea of how this might work:

  • Ask My Buddy helps users in an emergency. In an emergency, it can send phone calls or text messages to up to five contacts. A user would say, “Alexa, ask my buddy Bob to send help” and Bob would get an alert to check in on his friend.
  • Linked thermostats can raise or lower the temperature a precise amount, and lights can also be turned on or off or adjusted for specific needs.
  • Marvee can keep seniors in touch w/ their families and lessen social isolation.
  • The Fitbit skill allows the user who also has a Fitbit to trace their physical activity, encouraging fitness.

Again looking to Boston for precedent, related apps include the Children’s Hospital and Kids’ MD ones from Children’s Hospital. Imagine how helpful it could be if the gerontology departments of hospitals provided similar “skills” for seniors!

Most important to making this service work would be to capitalize on the growing number of city-based open-data programs that release a variety of important real-time data bases which independent developers mash up to create “skills”  such as real-time transit apps.  The author was a consultant to the District of Columbia in 2008 when it began this data-based “smart city” approach with the Apps for Democracy contest, which has spawned similar projects worldwide since then.  When real-time city data is released, the result is almost magic: individuals and groups see different value in the same data, and develop new services that use it in a variety of ways at no expense to taxpayers.

The key to this half of the pilot programs would be creating a working relationship with local Meetups such as those already created in various cities for Alexa programmers, which would facilitate the relationship) to stage one or more high-visibility hackathons. Programmers from major public and social service institutions serving seniors, colleges and universities, and others with an interest in the subject could come together to create “skills” based on the local public data feeds, to serve seniors’ needs, such as:

  • health
  • nutrition
  • mobility
  • city services
  • overcoming social isolation (one might ask how a technological program could help with this need. The City of Barcelona, generally acknowledged as the world’s “smartest” city, is circulating an RFP right now with that goal and already has a “smart” program for seniors who need immediate help to call for it) .

“Skills” are proliferating at a dizzying rate, and ones developed for one city can be easily adapted for localized use elsewhere.

Such a project would have no direct costs, but the city and/or a non-profit might negotiate lower bulk-buying rates for the devices, especially the l0wer price ($59 list) Amazon Dot, similar to the contract between the Japan Post Group, IBM, and Apple to buy 5 million iPads and equip them with senior-friendly apps from IBM which the Post Group would then furnish to Japanese seniors. Conceivably, the Dots bought this way might come preloaded with the localized and senior-friendly “skills.” 

The second component of a prototype SmartAging city program would make the wide range of local real-time location-based data available by various cities usable by cities joininh the 100+ cities worldwide who have joined the “Things Network” that create free citywide data networks specifically for Internet of Things use.

The concept uses technology called LoRaWAN: low-cost (the 10 units used in Amsterdam, each with a signal range of about 6 miles, only cost $12,000 total — much cheaper ones will be released soon), and were deployed and operative in less than a month!  The cost and difficulty of linking an entire city has plummeted as more cities join, and the global project is inherently collaborative.

With Things Network, entire cities would be converted into Internet of Things laboratories, empowering anyone (city agencies, companies, educational institutions, non-profits, individuals) to experiment with offering new services that would use the no-cost data sharing network.  In cities that already host Things Networks,  availability of the networks has spawned a wide range of novel local services.  For example, in Dunblane, Scotland, the team is developing a ThingsNetwork- based alarming system for people with dementia.  Even better, as the rapid spread of citywide open data programs and resulting open source apps to capitalize on them has illustrated, a neat app or service created in one city could easily be copied and enhanced elsewhere — virtuous imitation!

The critical component of the prototype programs would be to hold one or more hackathons once the network was in place.  The same range of participants would be invited, and since the Things Network could also serve a wide range of other public/private uses for all age groups and demographics, more developers and subject matter experts might participate in the hackathon, increasing the chances of more robust and multi-purpose applications resulting.

These citywide networks could eventually become the heart of ambitious two-way services for seniors based on real-time data, similar to those in Bolsano, Italy

The Internet of Things and smart cities will become widespread soon simply because of lowering costs and greater versatility, whether this prototype project for seniors happens or not. The suggestions above would make sure that the IoT serves the public interest by harnessing IoT data to improve seniors’ health, reduce their social isolation, and make them more self-sufficient. It will reduce the burden on traditional government services to seniors while unlocking creative new services we can’t even visualize today to enhance the aging process.

comments: Comments Off on A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging” tags: , , , , , , ,

Amazon Echo Silver: bringing a little laughter (& the IoT) to aging

Some of you may remember that I’ve blogged several times about my enthusiasm for Amazon’s Alexa as a cornerstore of what I call SmartAging, the combination of IoT health-monitoring devices to keep you healthier and smart home devices to make it easier to manage your home and avoid institutionalization.

However, I’m in awe of how the crackerjack gerontology researchers at SNL (don’t forget, kiddies, we were your age when the show began in 1975. Sobering, eh?) in “partnership” with AARP, LOL, have custom crafted a special edition Echo for the “Greatest Generation”: Amazon Echo Silver!

My particular favorite feature is the random “uh huh” to punctuation seniors’ rambling stories, but Kate McKinnon’s bit about turning up the thermostat when it’s already 100 is also priceless, and all the other vignettes are pretty over-the top as well (thank goodness I can ping my iPhone with my Apple Watch — I find increasingly creative places to put the phone down). I’ve never been that great on names, so the range of acceptable variations on “Alexa” would be welcomed (BTW: I could swear that one day recently when I was talking to Alexa Siri responded. Why can’t those gals get along?).

I could point out that the “uh huh” might really be a first step toward a really interactive device that could help seniors overcome social isolation, but why weigh down with social significance something that’s an absolute riot?

Aging: if you can’t laugh about it, you’re in serious, serious trouble.

 

 

comments: Comments Off on Amazon Echo Silver: bringing a little laughter (& the IoT) to aging tags: , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management