McKinsey IoT Report Nails It: Interoperability is Key!

I’ll be posting on various aspects of McKinsey’s new “The Internet of Things: Mapping the Value Beyond the Hype” report for quite some time.

First of all, it’s big: 148 pages in the online edition, making it the longest IoT analysis I’ve seen! Second, it’s exhaustive and insightful. Third, as with several other IoT landmarks, such as Google’s purchase of Nest and GE’s divestiture of its non-industrial internet division, the fact that a leading consulting firm would put such an emphasis on the IoT has tremendous symbolic importance.

McKinsey report — The IoT: Mapping the Value Beyond the Hype

My favorite finding:

“Interoperability is critical to maximizing the value of the Internet of Things. On average, 40 percent of the total value that can be unlocked requires different IoT systems to work together. Without these benefits, the maximum value of the applications we size would be only about $7 trillion per year in 2025, rather than $11.1 trillion.” (my emphasis)

This goes along with my most basic IoT Essential Truth, “share data.”  I’ve been preaching this mantra since my 2011 book, Data Dynamite (which, if I may toot my own horn, I believe remains the only book to focus on the sweeping benefits of a paradigm shift from hoarding data to sharing it).

I was excited to see that the specific example they zeroed in on was offshore oil rigs, which I focused on in my op-ed on “real-time regulations,” because sharing the data from the rig’s sensors could both boost operating efficiency and reduce the chance of catastrophic failure. The paper points out that there can be 30,000 sensors on an rig, but most of them function in isolation, to monitor a single machine or system:

“Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.”

Yet, the researchers found that only about 1% of the rig data was being used, because it rarely was shared off the rig with other in the company and its ecosystem!

The section on interoperability goes on to talk about the benefits — and challenges — of linking sensor systems in examples such as urban traffic regulation, that could link not only data from stationary sensors and cameras, but also thousands of real-time feeds from individual cars and trucks, parking meters — and even non-traffic data that could have a huge impact on performance, such as weather forecasts.  

While more work needs to be done on the technical side to increase the ease of interoperability, either through the growing number of interface standards or middleware, it seems to me that a shift in management mindset is as critical as sensor and analysis technology to take advantage of this huge increase in data:

“A critical challenge is to use the flood of big data generated by IoT devices for prediction and optimization. Where IoT data are being used, they are often used only for anomaly detection or real-time control, rather than for optimization or prediction, which we know from our study of big data is where much additional value can be derived. For example, in manufacturing, an increasing number of machines are ‘wired,’ but this instrumentation is used primarily to control the tools or to send alarms when it detects something out of tolerance. The data from these tools are often not analyzed (or even collected in a place where they could be analyzed), even though the data could be used to optimize processes and head off disruptions.”

I urge you to download the whole report. I’ll blog more about it in coming weeks.

Every IoT office needs this graphic on privacy and security

Long-time readers know that I frequently rant that privacy and security are Job 1 when it comes to the IoT.  

No apologies: it’s because I spent many years in corporate crisis management, and I learned the hard way that public trust is hard to earn, easy to lose, and, once lost, difficult or impossible to regain.

That’s why I was so glad to see this really informative, attractive, and scary infographic from Zora Lopez at Computer Science Zone, because it lays everything out so vividly.  Among the key points:

  1. (seen this before, but it still astounds me) In 2011, 20 typical households generated as much data as the entire Internet did as recently as 2008.
  2. the number of really-large (on scale of e-Bay, Target, etc.) data thefts grow annually.
  3. the bad guys particularly go after extremely sensitive data such as health, identity and financial.

It concludes with a particularly sobering reminder (you may remember my comment on the enthusiastic guys who presented at Wearables + Things and cheerfully commented that they would eventually get around to privacy and security — NOT!):

The barrier to entry in tech has never been lower, leaving many new organizations to later grapple with unsatisfactory security.” (my emphasis)

So: print a copy of the following for every employee and new hire, and put it on the cube’s wall immediately (here’s the original URL:

IoT Privacy and Security, from Computer Science Zone

Energy to Power the #IoT: it’s really just a matter of child’s play

Posted on 12th June 2015 in energy, environmental, Internet of Things, M2M, mobile, sensors, wearables

Saving the Earth from global warming is going to require reducing our use of fossil fuels, yet we keep coming up with new technologies, such as the Internet of Things, that will require even more energy. So how do we reconcile the two needs?

In part, through harvesting ambient energy, and, most cleverly, kinetic energy generated in the process of doing something else, from moving liquids through pipelines, wheels as vehicles move, or even as we humans move about in our daily lives.

As you’ll see from the examples below, there’s enough projects in the field that I’m confident a growing number of sensor networks will be powered through ambient energy in the future. Equally important, in the not-too-distant future we’ll laugh that we once plugged in our smartphone and watches to charge them, rather than harvesting the energy we generate every day simply by moving around.

I saw an incredible example at the recent Re-Work IoT Summit in Boston, courtesy of Jessica O. Matthews of Uncharted Play. By my calculations, Matthews’ own energy output would allow shutting down 2.3 nukes: before her session began, I saw this striking woman on the stage — Matthews –skipping rope.

In high heels!

Then the fun began. Or should I say, the energy production.

Matthews, an MIT grad, works largely in Africa, creating very clever playthings that — ta da! — harvest energy, such as the very cool Soccket ball shown in the video above (you can see here how it’s made).  It has a battery built in that’s charged by the large amount of kinetic energy created by kids on the playground who are just having fun.  At night, they take the ball home and, voila, plug a socket into the side of the ball and they have precious light to read by. How incredibly cool is that?

The Pulse jump rope powers two lights

Matthews’ jump rope (“The Pulse”)? The kinetic energy from that  powers TWO lights!

But there’s a lot of other neat stuff going on in terms of capturing kinetic energy that could also power IoT devices:

  • Texas Instruments has harvested energy to run sensors from changes in temperature, vibrations, wind and light.  I knew about harvesting the energy from pipeline vibrations, but hadn’t thought about getting it from the temperature differential between the interior of pipes carrying hot water and the outside air. TI says that yields a paltry 300-400 millivolts, but they’ve figured out how a DC-to-DC switching converter can increase it to 3-5 volts — enough to charge a battery.
  • TI is also researching how kinetic energy could charge your phone:”To power wearables, the company has demonstrated drawing energy from the human body by using harvesters the size of wristwatch straps.. It has worked with vibration collectors, for instance, about the same size as a key.”It’s possible that a smartwatch could use two harvested power sources, light and heat, from the body. These sources may not gather enough power to keep a smartwatch continuously operating without action by the user to charge it, but it may give the user’s device a lot more battery life.”
  • Perhaps most dramatically of all, as I reported before, there’s some incredible research on ambient energy underway at the University of Washington, where they use “ambient backscatter,” which: ‘…leverag[es] existing TV and cellular transmissions, rather than generating their own radio waves. This novel technique enables ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.’”

    PoWiFi, harvesting ambient energy

    Now, a member of that team,Vamsi Talla, has harvested energy from ambient wi-fi,  “PoWiFi,” as it’s called, to power a temperature sensor and to let a surveillance camera take a picture every 35 minutes (given how pervasive surveillance cameras are today, that could really be a godsend — or a nightmare, depending on your perspective). “For the experiment, hot-spots and routers were modified to broadcast noise when not being used for data transmission. This is because Wi-Fi signals are broadcast in bursts across different frequencies which makes the energy too intermittent to be useful.”  (TY 2 Jackie Bassett of  SealedSpeed for this one).

Bottom line: forget those charging pads that are starting to crop up. In the future, you’ll be powering your phone, and the very devices that sensors are monitoring will be powering them. A win for the IoT — and the environment!

PS: jury’s still out on whether we’ll all have to register with FERC as utilities….

Intel’s IoT tech improves its own manufacturing efficiency

This demonstration IoT manufacturing project hits my buttons!

I love IoT-enabled manufacturing (what I call “precision manufacturing“) and I REALLY love companies (such as GE, at its Durathon battery plant) that eat their own dogfood by applying their IoT technology internally.  Gotta walk the talk!


That’s why I was happy to learn how Intel is  applied its own IoT technology to its own factories. In the accompanying video, Intel VP for IoT operations and group marketing Frank James says:

“The real opportunity is how to combine … data differently, which will ultimately give you insights not only into how your factory is running but, what’s more important, will let you predict how your factory will run the next minute, the next hour, the next shift, the next day.”

The pilot factory automation project is a collaboration with Mitsubishi Electric (more points for a key IoT “Essential Truth” — collaboration!).  The project, at Intel’s Malaysia manufacturing facility, combines two critical components, end-to-end IoT connectivity and big data analytics. The benefits were impressive: $9 million in cost avoidance and improved decision making, plus:

  • improved equipment uptime
  • increased yield and productivity
  • predictive maintenance
  • reduced component failures.

That hard-to-quantify improved decision making, BTW, is one of the things that doesn’t get enough discussion when we talk about IoT benefits: decision-making improves when there is more data to consider, more people to analyze and discuss it simultaneously (not sequentially, as in the past), and when you’ve got tools such as data dashboards to allow visualizing the data and its patterns.

The companies plan to roll out the services commercially this year.

Here are the specs:

“Using an Intel® Atom™ processor-based IoT gateway called the C Controller from Mitsubishi Electric’s iQ-Platform, Intel was able to securely gather and aggregate data for the analytics server. Data was then processed using Revolution R Enterprise* software from Revolution Analytics*, an analytics software solution that uses the open source R statistics language, which was hosted on Cloudera Enterprise*, the foundation of an enterprise data hub.”


Exploiting full potential of iBeacons for Internet of Things

One of the most exciting aspects of the Internet of Things is seeing how, when more people are exposed to one of its technologies, they find uses for it that the inventors might not have visualized.  I give you … the iBeacon.

The Apple protocol (again, my obligatory disclaimer that I work part-time at an Apple Store, but have no inside information or any obligation to hype their tech) is used in Bluetooth low-energy transmitters (“beacons”) that broadcast their location to nearby devices so they can perform actions such as social-media check-ins or push notifications while near the beacon.  They’re most frequently used in marketing to offer targeted bargains, and primarily have been used by the biggest retailers and sites such as major-league ballparks, but, as you’ll see, not always.

At the Re-Work Internet of Things Summit I met two young entrepreneurs, Justin Mann and Ben Smith  of Beacons in Space, a Boston startup that would allow new apps to leverage existing installed iBeacons — typically installed by large retailers and closed to others —  instead of having to add more beacons in a given space. This would be done through a subscription model with a simple API on top of a beacon rental marketplace. It would allow smaller developers can scale their developments and projects without having to invest in a redundant iBeacon array.

But I was particularly interested in how some clever developers are applying iBeacons outside retail settings.

One is at the Zoom Torino Biopark in Cumiana, Italy. iBeacons around the zoo trigger an app including an interactive map that helps visitors move around the park by giving their exact location and showing where other attractions are located.

“As visitors discover the six different habitat environments of the park, they will be able to unlock specific details, facts and suggestions throughout their journey thanks to hidden Bluetooth transmitting beacons, which trigger relevant content on a visitor’s smartphone based on their location.

“Users will also benefit from alerts on their mobile device informing them of special events during their visit, like meeting animals or presentations. By engaging with the app, visiting certain locations within the park and answering quiz questions, visitors can also earn promotional items and discount coupons for use within the park.”

installing iBeacon on Bucharest trolley to guide visually-impaired

Best of all,  Romania is using them in a very clever system, The Smart Public Transport (SPT) solution, to give visually-impaired riders audio clues through their smartphone about Bucharest’s bus system, a joint project of the Smart Public Transport project and Romania’s RATB trolley buses. Onyx Beacon, a Romanian company, is installing 500 Beacons on the city’s most heavily used public transportation vehicles (the project, incidentally, was funded by Vodafone under its “Mobile for Good” program, encouraging use of technology for social programs and to solve specific problems of those with special personal needs).

All of these projects show the utility — provided there are privacy and security provisions built in, and the systems are opt-in, of iBeacons for giving hyper-localized information and offers. If the Beacons in Space concept takes off, to eliminate the need to deploy more iBeacons for every new app, the concept might really become an important part of the IoT, whether for retail or civic uses.

Incredible example of rethinking “things” with Internet of Things

Ladies and gentlemen, I give you the epitome of the IoT-enabled product: the trash can!

My reader statistics do not indicate this blog has a heavy readership among trash cans, but let me apologize in advance to them for what I’m about to write: it’s not personal, just factual.

I’m sorry, but you municipal trash cans are pathetic!

Dented. Chipping paint. Trash overflowing. Smelly. Pests (ever seen any of those prize city rats? Big!!!) Sometime even knocked over. And, worst of all, you are so…. DUMB. You just sit there and don’t do anything.

BigBelly trash compactor and recycling center

But that was then, and this is now.

I have seen the future of trash cans, and, equally important, perhaps the best example I’ve seen of how smart designers and company strategists can –and must — totally rethink products’ design and how they are used because of the Internet of Things! 

At last week’s Re-Work Internet of Things Summit there were many exciting new IoT examples (I’ll blog others in coming weeks) but perhaps the one that got more people talking was the BigBelly trash compactor & recycling system, high-tech successor to the lowly trash can.

The company’s motto is that they are “transforming waste management practices and contributing to the Smart Cities of tomorrow.” Indeed!

I was first attracted to the BigBelly systems because of my alternative energy and environmental passions: they featured PV-powered trash compactors, which can quintuple the amount a trash container can hold, eliminating overflowing containers and the need to send trucks to empty them as frequently. Because the containers are closed, there’s no more ugly banana peels and McDonald’s wrappers assaulting your delicate eyes — or noses! Equally important, each is paired with a recycling container, which are almost never seen on city streets, dramatically reducing the amount of recyclables that go into regular trash simply because no recycling containers are accessible downtown.  These features alone would be a noteworthy advance compared to conventional trash cans.

But BigBelly wasn’t content to just improve the efficiency of trash and recyclable collection: they decided to make the containers smart.

The company worked with Digi to add wireless communications to the bins. This is a critical part of BigBelly’s broader significance: when the IoT first started to creep into corporate consciousness, of course designers thought about smart versions of high-value products such as cars, but lowly trash cans? That deserves real praise, because they fundamentally re-examined not only the product as it existed, but also realized that an IoT-based version that could also communicate real-time data would become much more versatile and much more valuable.

Here’s what has resulted so far (and I suspect that as the BigBellys are more widely deployed and both city administrators and others become aware of their increased functionality, other features will be added: I see them as “Smart City Hubs!”):

  • heatmap of trash generation in Lower Manhattan using real-time data from BigBellys and CLEAN dashboard

    instead of traditional pickup routes and schedules that were probably based on sheer proximity (or, as BigBelly puts it a little more colorfully, “muscle memory and gut instincts”), they now offer a real-time way to monitor actual waste generation, through the “CLEAN Management Console,” which allows DPW personnel to monitor and evaluate bins’ fullness, trends and historical analysis, for perspective. Collections can now be dynamic and driven by current needs, not historical patterns.

  • For those cities that opt for it, the company offers a Managed Services option where it does the analysis and management of the devices — not unlike the way jet turbine manufacturers now offer their customers value-added data that allows them to optimize performance — and generates new revenue streams for the manufacturers.
  • You may remember that I blogged a while ago about the “Collective Blindness” analogy: that, until the IoT, we humans simply couldn’t visualize much about the inner workings of the material world, so we were forced to do klugy work-arounds.  That’s not, strictly speaking, the case here, since trash in a conventional can is obviously visible, but the actual volume of trash was certainly invisible to those at headquarters. Now they can see — and really manage it.
  •  They can dramatically increase recycling programs’ participation rate and efficiency. As BigBelly says, the system provides “intelligent infrastructure to support ongoing operations and free up staffing and resources to support new and expanded recycling programs. Monitoring each separate stream volumes, days to fullness, and other activities in CLEAN enables you to make changes where needed to create a more effective public recycling program. Leverage the stations’ valuable sidewalk real estate to add messaging of encouraging words to change your users’ recycling behaviors.”Philadelphia is perhaps the best example of how effective the system can be. The city bought 210 of the recycling containers in 2009. On average, each collected 225 pounds of recyclables monthly, resulting in 23.5 tons of material diverted from landfills. Philly gets $50 per ton from the recycling — and avoiding $63 in landfill tipping fees, with a total benefit to the city of $113 per ton, or $2599 per month.

Here’s where it really gets neat, in my estimation.

Because the BigBellys are connected in real time, the devices can serve a number of real-time communication functions as well (enabled by an open API and an emphasis by BigBelly on finding collaborative uses). That includes making them hubs for a “mesh network” municipal wi-fi system (which, by the way, means that your local trash container/communications hub could actually save your life in a disaster or terror attack, when stationary networks may be disrupted, as I explained years ago in this YouTube video).

The list of benefits goes on (BigBelly lists all of them, right down to “Happy Cities,” on its web site). Trust me: if my premise is right that we can’t predict all of the benefits of the IoT at this point because we simply aren’t accustomed to thinking expansively about all the ways connected devices can be used, there will be more!

So here’s my take-away from the BigBelly:

If something as humble and ubiquitous as a municipal trashcan can  be transformed into a waste-reduction, recycling collection, municipal communication hub, then to fully exploit the Internet of Things’ full potential, we need to take a new, creative look at every material thing we interact with, no longer making assumptions about its limited role, and instead looking at it creatively as part of an interconnected network whose utility grows the more things (and people!) it’s connected with!

Let me know your ideas on how to capitalize on this new world of possibilities!