I Have Seen the Future of Agriculture & It is the IoT (Grove Labs)

Agriculture is a passion of mine, partially because of environmental concerns, and also because I love veggie gardening. There has been an encouraging trend in the US recently, with the advent of Community Supported Agriculture (CSA) and the localvore movement. However, that’s counterbalanced by the terrible continuing California drought, and the sobering realization that, worldwide, there are more than 805 million who are undernourished. Clearly, we need to produce more food — and do it much more efficiently and in line with natural principles.

Grove Labs Aquaponics system

That’s why I’m so excited about the new Grove Labs system being developed in, of all places, Somerville MA (which has become a start-up haven for ag-related companies through the Greentown Labs incubator. They include Freight Farms [ I will blog about them later..], which is pursuing a similar closed-loop approach on a larger scale, and Apitronics, which presented at one of our Boston IoT Meetups last year.).

It was developed by two young MIT grads, Jamie Byron (who became “obsessed” with the problems of current worldwide agriculture while on an internship) and Gabe Blanchet, who created the primitive precursor of the aquaponics system in their frat house. Now, in its beta testing form (sign up ASAP if you live in the Hub to buy a prototype!), the “Grove” is an integrated ecosystem attractive enough to be placed in your kitchen.

According to The Verge  (which pointed out that dope growers’ experience with hydroponics may have helped Byron and Blanchet, LOL!):

“The Grove system looks like a 6-foot-tall wood cabinet with four LED-lit boxes for plants. Three are smaller, for leafy greens and herbs, and one is larger, for things like tomatoes or peas. On the bottom left is an aquarium whose fish provide fertilizer for the plants. The fish are what make the system ‘aquaponic,’ a particularly organic variant on traditional hydroponics.

….” ‘Essentially we took the philosophy and biology of an actual ecosystem and shrunk it down and put it in a bookshelf tower,’ Blanchet says. The fish produce ammonia in their waste, which gets pumped to the plants, where bacteria convert the ammonia to nitrate. The plants consume the nitrate, filtering the water, which gets returned to the fish. ‘If you keep the system running optimally you can grow plants faster than you can outside,’ says Blanchet.”

A critical component that qualifies the system as an IoT one is the “Grove” app, which will tell owners important information about lighting schedules, when to add nutrients, etc. The all-important sensors will provide critical real-time data about growing conditions and what’s needed.

The Grove isn’t a panacea for world hunger: for one thing, it’s pricey ($2600), although economies of scale when the company is in full swing may bring that down. It also requires involvement by the owner: you can’t just sit there and admire how things grow. You’ll need to actively monitor the app and do routine maintenance. The LED lighting system, as efficient as it may be, won’t work in remote, poor areas where there’s no electricity (but that might come from an nearby PV panel!

Nonetheless, I can see the grove playing a growing (groan, sorry for the pun..) role in meeting the world’s food needs, and, best of all, doing so in a way that capitalizes on one of my key beliefs about the IoT, that it will bring about an era of unprecented precision in use of raw materials, manufacturing, whatever, because of real-time monitoring, and, increasingly, M2M systems where a sensor reading on one device will trigger operation of another. Large-scale farming is also getting more precise due to systems such as John Deere’s FarmSight, so count agriculture as yet another industry that will be revolutionized through the IoT.


The Grove Labs approach really resonated with me because I’ve been using two 8′ x 4′ 30″ high modules for my own veggies for the last twenty years, planted according to engineer/gardener Mel Bartholomew’s great “Square Foot Gardening” system, with varying levels of success. I had grand visions of manufacturing modules from recycled plastics and adding greenhouse-fabric domes to extend the season, and an app to remind owners of when to plant and fertilize but never followed through, so I really admire those who did, and the way they’re incorporating IoT technology.

New Alchemy’s Institute’s “Ark” (in rear)

When I contacted the co-founders, they were unaware that they stand on the shoulders of giants who have developed a natural systems-based approach to agriculture right here in the Bay State, especially John Todd, who (I believe) pioneered the approach with his wonderful New Alchemy Institute on the Cape, where he methodically added new elements — plexiglas water storage, tilapia, etc. — to the passive-solar “Ark” until he had a balanced, self-sustaining system.  John, who has since gone on to develop great natural-systems based wastewater treatment facilities, had a young apprentice, Greg Watson, who went on to become the Commonwealth’s incredibly innovative ag commissioner.

Oh well, it appears these guys have more than reinvented the wheel! Good luck to them.

“Enchanted Objects” — adding delight to the IoT formula

Posted on 21st January 2015 in design, Essential Truths, Internet of Things, marketing, smart home

For good reason, most discussions of opportunities with the Internet of Things focus on the potential to improve businesses’ operating efficiency or creating new revenue streams.

But what if the IoT could also bring out the hidden 6-yr. old in each of us? What if it could allow us to invent — enchanted objects?

That’s the premise of IoT polymath David Rose’s Enchanted Objects: Design, Human Desire, and the Internet of Things.

Enchanted Objects: Design, Human Desire, and the Internet of Things

Rose is both a stalwart of the MIT Media Lab and a pioneering, serial IoT entrepreneur. Oh, and he’s got an impish grin that shows you he is still as delighted at tinkering with things as he was as a little boy in his grandfather’s workshop:

“Grandfather’s tools were constructed and used with a respect for human capabilities and preferences. They fit human bodies and minds. They were a pleasure to work with and to display. They made us feel powerful, more skilled and capable than we were without them. They hung or nestled quietly, each in its place, and never made us feel stupid or overwhelmed. They were, in a word, enchanting.”

Rose fears that’s not the path we’re heading down with most current techno-products, dismissing them as “cold, black slabs … [resulting in a ] colder, more isolated, less humane world. Perhaps it is more efficient, but we are less happy.”  Yea!

By contrast, enchanted objects resonate with our deepest desires:

“The experiences that do enchant us reach into our hearts and souls. They come from the exotic place of  ‘once upon a time.’ They help us realize fundamental human desires. The fantastic technologies we have invented over the centuries , the ones of ancient tales and science fiction, enable us to do things that human beings earnestly want to do but cannot do without a little (or a lot) of help from technology. They make it possible to fly, communicate without words, be invisible, live forever, withstand powerful forces, protect ourselves from any harm, see farther and travel faster than the greatest athletes. They are tools that make us incredible, supercapable versions of ourselves. These are the visions and stories of our most beloved authors of fiction and fantasy — Tolkien and C. S. Lewis and J. K. Rowling and the Grimms — and the realities of fantastic characters such as Cinderella, Dick Tracy, James Bond, Superman, and Wonder Woman. The designers creating enchanted objects must, therefore, think of themselves as something more than manipulators of materials and masters of form. They must think beyond pixels, connectivity, miniaturization , and the cloud. Our training may be as engineers and scientists, but we must also see ourselves as wizards and artists, enchanters and storytellers, psychologists and behaviorists.”(my emphasis).

Rose discusses a number of the products he’s designed, such as the Ambient Orb, which can be hacked to unobtrusively (the physiological phenomenon that makes them work is called “pre-attentive processing” in case you’re looking for a term to throw around at a cocktail party…) display all sorts of information, from stock market trends to energy consumption and the Ambient Umbrella, whose handle glows if rain is predicted (that one hasn’t been a big success, which I predicted — it’s as easy to lose an expensive, “smart” umbrella as a $10 one. I prefer the IFTTT recipe that has your HUE lights blink blue if rain is predicted, reminding you to take your utterly conventional, cheap umbrella…), as well as one of my favorites, the Vitality Glow Cap, which can reduce the billions in wasted medical spending attributable to people not taking their prescriptions.

Skype Cabinet

And then there’s one that every child or grandparent will love, the Skype Cabinet, a square that sits in your living room, and, when the door is opened, shazaam, there is your grandchild or grandparent, instantly connected with you via Skype. Enchantment indeed!

However, the real meat of the book is his methodology for those of us to whom enchantment doesn’t come as naturally. First, Rose lists seven basic human drives that designers should try to satisfy: omniscience, telepathy (human-to-human communication), safekeeping, immortality, teleportation (that’s high on my personal list after my recent up-close-and-personal encounters with rogue deer.), and expression.

Then Rose explains how technology, especially sensors, will allow meeting these desires through products that sense their surroundings and can interact with us.  In terms of my IoT “Essential Truths,” I’d classify enchanted objects as exemplifying “What Can You Do Now That You Couldn’t Do Before,” because we really couldn’t interact with products in the past.  Other examples in this category that I’ve cited before range from the WeMo switches that helped me make peace with my wife and the life-saving Tell-Spec that lets you find food allergies.

Other thought-provoking sections of the book include “Seven Abilities of Enchantment,  “Five Steps on the Ladder of Enchantment,” and “Six Future Fantasies,” the latter of which is must reading for product designers and would-be entrepreneurs who want to come up with fundamentally new products that will exploit the IoT’s full potential for transformation.

The other day I finally met with Mahira Kalim, the SAP IoT marketing director who whipped my thinking into shape for the “Managing the Internet of Things Revolution” i-guide.  She asked me for examples of the kind of radical transformation through the IoT that are already in existence.  I suspect that some of Rose’s inventions fall into that category, but, more important, Enchanted Objects provides the roadmap and checklist for those who want to create the next ones!  Get it, devour it, and profit from it!

Management Challenge: Lifeguards in the IoT Data Lake

In their Harvard Business Review November cover story, How Smart, Connected Products Are Transforming Competition, PTC CEO Jim Heppelmann and Professor Michael Porter make a critical strategic point about the Internet of Things that’s obscured by just focusing on IoT technology: “…What makes smart, connected products fundamentally different is not the internet, but the changing nature of the “things.”

In the past, “things” were largely inscrutable. We couldn’t peer inside massive assembly line machinery or inside cars once they left the factory, forcing companies to base much of both strategy and daily operations on inferences about these things and their behavior from limited data (data which was also often gathered only after the fact).

Now that lack of information is being removed. The Internet of Things creates two unprecedented opportunities regarding data about things:

  • data will be available instantly, as it is generated by the things
  • it can also be shared instantly by everyone who needs it.

This real-time knowledge of things presents both real opportunities and significant management challenges.

Each opportunity carries with it the challenge of crafting new policies on how to manage access to the vast new amounts of data and the forms in which it can be accessed.

For example: with the Internet of Things we will be able to bring about optimal manufacturing efficiency as well as unprecedented integration of supply chains and distribution networks. Why? Because we will now be able to “see” inside assembly line machinery, and the various parts of the assembly line will be able to automatically regulate each other without human intervention (M2M) to optimize each other’s efficiency, and/or workers will be able to fine-tune their operation based on this data.

Equally important, because of the second new opportunity, the exact same assembly line data can also be shared in real time with supply chain and distribution network partners. Each of them can use the data to trigger their own processes to optimize their efficiency and integration with the factory and its production schedule.

But that possibility also creates a challenge for management.

When data was hard to get, limited in scope, and largely gathered historically rather than in the moment, what data was available flowed in a linear, top-down fashion. Senior management had first access, then they passed on to individual departments only what they decided was relevant. Departments had no chance to simultaneously examine the raw data and have round-table discussions of its significance and improve decision-making. Everything was sequential. Relevant real-time data that they could use to do their jobs better almost never reached workers on the factory floor.

That all potentially changes with the IoT – but will it, or will the old tight control of data remain?

Managers must learn to ask a new question that’s so contrary to old top-down control of information: who else can use this data?

To answer that question they will have to consider the concept of a “data lake” created by the IoT.

“In broad terms, data lakes are marketed as enterprise wide data management platforms for analyzing disparate sources of data in its native format,” Nick Heudecker, research director at Gartner, says. “The idea is simple: instead of placing data in a purpose-built data store, you move it into a data lake in its original format. This eliminates the upfront costs of data ingestion, like transformation. Once data is placed into the lake, it’s available for analysis by everyone in the organization.”

Essentially, data that has been collected and stored in a data lake repository remains in the state it was gathered and is available to anyone, versus being structured, tagged with metadata, and having limited access.

That is a critical distinction and can make the data far more valuable, because the volume and variety will allow more cross-fertilization and serendipitous discovery.

At the same time, it’s also possible to “drown” in so much data, so C-level management must create new, deft policies – to serve as lifeguards, as it were. They must govern data lake access if we are to, on one hand, avoid drowning due to the sheer volume of data, and, on the other, to capitalize on its full value:

  • Senior management must resist the temptation to analyze the data first and then pass on only what they deem of value. They too will have a crack at the analysis, but the value of real-time data is getting it when it can still be acted on in the moment, rather than just in historical analyses (BTW, that’s not to say historical perspective won’t have value going forward: it will still provide valuable perspective).
  • There will need to be limits to data access, but they must be commonsense ones. For example, production line workers won’t need access to marketing data, just real-time data from the factory floor.
  • Perhaps most important, access shouldn’t be limited based on pre-conceptions of what might be relevant to a given function or department. For example, a prototype vending machine uses Near Field Communication to learn customers’ preferences over time, then offers them special deals based on those choices. However, by thinking inclusively about data from the machine, rather than just limiting access to the marketing department, the company shared the real-time information with its distribution network, so trucks were automatically rerouted to resupply machines that were running low due to factors such as summer heat.
  • Similarly, they will have to relax arbitrary boundaries between departments to encourage mutually-beneficial collaboration. When multiple departments not only share but also get to discuss the same data set, undoubtedly synergies will emerge among them (such as the vending machine ones) that no one department could have discovered on its own.
  • They will need to challenge their analytics software suppliers to create new software and dashboards specifically designed to make such a wide range of data easily digested and actionable.

Make no mistake about it: the simple creation of vast data lakes won’t automatically cure companies’ varied problems. But C-level managers who realize that if they are willing to give up control over data flow, real-time sharing of real-time data can create possibilities that were impossible to visualize in the past, will make data lakes safe, navigable – and profitable.

Another Personal IoT Story: my next car will have auto braking

Posted on 16th January 2015 in automotive, Essential Truths, transportation

Sorry to burden you with another personal Internet of Things story, especially since this one’s nowhere near as nice as how car_crashsmart sockets made peace in my house!

For the second time in less than a month, I was hit by a deer at night on Rt. 27 in Medfield, MA. If you know our area, its in the outer suburbs, and plagued by deer, who are mating at this time of year, and are absolutely nuts. Two hours later, I’m still shaking, and extremely lucky to have escaped a serious injury.

I don’t know if  it would have avoided a collision, because they were running sooo fast, but you can be sure that my next car with be a smart one, with sensors and an automatic braking system like the ones on TMercedes, BMWs and high-end Hyundai‘s.  Here’s something where the smart version wouldn’t just simplify something, but would observe one of my “Essential Truths” of the IoT, “what can you do now that you couldn’t do before.”

No driver who was focused on the road ahead could have possibly seen these deer rushing out of the pitch-black woods on the other side of the road (or, if he did, he would have crashed into something else because of taking his eyes off the road), but a motion-sensor coupled to the brakes would have detected motion in time to apply the brakes and maybe avoid the crash.

Tonight was one of the most traumatic events of my life, between the accident and the first time I’ve ever heard a gunshot up close, as the police put the doe out of her misery. If I can invest in IoT technology to avoid it happening again, I’ll be at the head of the line!

Cree Connected Bulb 1st Truly Affordable IoT Device

Cree Connected LED bulb

Not absolutely certain on this, but I’m pretty sure the new Cree Connected Bulb is an important landmark in the evolution of the consumer Internet of Things — the first really affordable home IoT device.

The bulb, soon to be available at Home Depot and online sources, will be priced at $15, according to a very favorable C|Net review.

When you consider that the average LED bulb will last more than 20 years and uses about 20% of the electricity that an equivalent incandescent does, that’s really a breakthrough — and could make a dent in electrical use (see my post about how the WeMo socket allows me to meet my wife’s desire for lights on when she gets home while I can save electricity) as part of smart grid strategies that’s even more important with the growing concern about global warming.

You’d need a $50 Wink hub, but just do the math:  a HUE kit, with a hub and three 60-watt equivalent bulbs, costs $199, as compared to $95 for the Cree/Wink equivalent. Of course, there is a major difference: the Cree bulb will only be available in white, while the HUE bulb can create 16,000 million (no, that wasn’t a typo!) light combinations from its built-in RBG elements.  That is very cool, but when you think about the gazillion bulbs throughout a typical house, adding additional HUE bulbs at $60 for the RBG ones or $29 for the white “Lux” ones, compared to $15 for the Cree ones, is a big difference that puts it out of reach for most of us. (BTW: Hue does have competition now, with a 10 pack of LIFX bulbs (no hub required) priced at $910).

This is exciting in its own right, but also gets one wondering whether economies of scale and/or new market entrants may mean more affordable alternatives to the $250 Nest thermostat and August deadbolt. If and when that happens, the IoT will really be mainstream, with huge implications for both the economy and home operations!

Good Checklist for Creating #IoT Strategy

Still not ready to tackle an analysis of the November Harvard Business Review cover story, by PTC CEO Jim Heppelmann and Professor Michael Porter, on How Smart, Connected Products Are Transforming Competition, but I did want to do a shout-out to a companion piece, Digital Ubiquity: How Connections, Sensors, and Data Are Revolutionizing Business, by two HBS profs, Marco Iansiti and Karim R. Lakhani.

In particular, I wanted to suggest that you use the last section of the paper, “Approaching Digital Ubiquity,” as a checklist of priorities to create your own IoT strategy (I’d be remiss if I didn’t also mention my “Managing the Internet of Things Revolution” i-guide and this blog’s “Essential Truths” as references as well..).

Here are their points, and my reflections on them:

  1. Apply the digital lens to existing products and services.
    This is a profound transformation, because we’ve become so accustomed to working around the gaps in our knowledge that were the reality in an analog world.As Iasanti and Lakhani say, you now need to ask:
    “What cumbersome processes in your business or industry are amenable to instrumentation and connectivity?
    Which ones are most challenging to you or your customers?”
  2. Connect your existing assets across companies.
    We “get” competition, but collaboration, especially with competitors, is a little less instinctive.

    “If you work in a traditional analog setting, examine your assets for new opportunities and look at other industries and the start-up world for new synergies. Your customer connections are especially valuable, as are your knowledge of customers’ needs and the capabilities you built to meet knowledge of customers’ needs and the capabilities you built to meet them. Nest is connecting with public utilities to share data and optimize overall energy usage. If you work in a start-up, don’t just focus on driving the obsolescence of established companies. Look at how you can connect with and enhance their value and extract some of it for yourself.knowledge of customers’ needs and the capabilities you built to meet them. Nest is connecting with public utilities to share data and optimize overall energy usage. [my note: this is a great example of thinking expansively: even though your product is installed in individual homes, if data can be aggregated from many homes, it can be of real value on a macro scale as well. The smart grid is a great example of bringing all components of energy production, distribution, and use together into an integrated system.]  If you work in a start-up, don’t just focus on driving the obsolescence of established companies. Look at how you can connect with and enhance their value and extract some of it for yourself.”

  3. Examine new modes of value creation.
    Just because you make tangible products doesn’t mean that you’re limited to just selling those products to make money in the future. You’ll be able to make money by selling customers actionable data that will allow them to improve productivity and reduce maintenance. Perhaps you’ll stop selling altogether, and make money instead by making your products the cornerstone of profitable services.

    Begin to ask:
    “What new data could you accumulate, and where could you derive value from new analytics?”
    “How could the data you generate enable old and new customers to add value?”

  4. Consider new value-capture modes.
    “Could you do a better job of tracking the actual value your business creates for others?”
    “Could you do a better job of monetizing that value, through either value-based pricing or outcomes-based models?”
  5. Use software to extend the boundaries of what you do.
    You will still make products, as in the past, and that gives you a tangible basis for the future. But you’ll need a digital component as well.

    “Digital transformation does not mean that your company will only sell software, but it will shift the capability base so that expertise in software development becomes increasingly important. And it won’t render all traditional skills obsolete. Your existing capabilities and customer relationships are the foundations for new opportunities. Invest in software-related skills that complement what you have, but make sure you retain those critical foundations. Don’t jettison your mechanical engineering wizards—couple them with some bright software developers so that you can do a better job of creating and extracting value.”

    What do you think?  Any more questions you’d add? Let me know!

The IoT Gets Real: My Own Experience

Sometimes, when we focus on the truly dramatic things that will be possible when the Internet of Things is fully implemented, such as fully automated smart homes or the end of traffic jams, it may divert attention from how the IoT is already making a tangible difference in our daily lives even with only early-stage devices and apps, and why everyone should be seriously considering IoT devices now.

Here’s my personal story.

Belkin WeMo Switch

I finally put my money where my mouth is this Christmas, and invested in two WeMo Switches from Belkin. What I like about them is that, unlike spending $250  for a new Nest Thermostat or a new August Dead Bolt, the WeMo switch allows me to increase the IQ of my decidedly old-fashioned current coffee maker and table lamps (OK, I still lust after the 16 million light combinations possible with HUE lights, but those will have to wait until I’m not paying college tuition for my youngest). Yeah, the $199 smart coffee maker would be cool, but not cool enough to justify tossing a perfectly good one.

Most important, the WeMos deliver on one of my IoT Essential Truths, namely, What Can You Do Now That You Couldn’t Do Before?

You see, we used to have a major bone of contention in the Stephenson household. My wife, understandably, didn’t like to come home to a dark house. Cheap Yankee and zealous environmentalist that I am, I didn’t want to leave the lights on all day just so they’d be on when she got home, and my ADD made it really iffy that I’d turn them on when leaving in the afternoon.

Major conflict.

But that was sooo 2014!  Now, I have a spiffy IFTTT “recipe” enabled:

IFTTT_Wemo_recipe

IFTTT/Wemo recipe

IFTTT_Wemo_recipe

Everyone wins (including the environment)! Instant domestic bliss: the lights go on precisely at sunset (I mean precisely:  it uses NWS data — how cool is that?), I get to save energy, my wife gets a warm and welcoming house when she returns.

Admittedly, it’s not world-changing, but it really does solve a tangible issue that we couldn’t solve to both our satisfactions in the past. IMHO, it’s precisely this kind of real-world, incremental improvement due to the Internet of Things that is going to speed IoT adoption this year

If your company is rolling out far-reaching IoT product either for the industrial or consumer market, think of what individual or limited offerings you could release now that would allow buyers to make a limited investment, realize substantive returns, and then build on those initial findings.

Thanks Kevin Ashton!


 

Sweet! Just saw news that Belkin plans to add WeMo compatibility for Apple’s HomeKit app in near future.

My personal vision for the Apple Watch is that, by linking to both the Health App and the HomeKit, it may bring about cross-fertilization of health and smart-home apps and devices similar to how the Jawbone UP alarm can now trigger the Nest thermostat.

This would be an important step toward my “Smart Aging” vision that would improve seniors’ health and allow them to “age in place” instead of being institutionalized.

Resolved: That 2015 Is When Privacy & Security Become #IoT Priority!

I’m a right-brained, intuitive type (ENFP, if you’re keeping Myers-Briggs score…), and sometimes that pays off on issues involving technology & the general public, especially when the decidedly non-technical, primal issue of FEAR comes into the equation.

I used to do a lot of crisis management work with Fortune 100 companies, and usually worked with engineers, 95% of whom are my direct opposite: ISTJ.  Because they are so left-brained, rational and analytical, it used to drive them crazy that the public would be so fearful of various situations, because peoples’ reaction was just so darned irrational!

I’m convinced that same split is a looming, and extremely dangerous problem for the Internet of Things: the brilliant engineers who bring us all these great platforms, devices and apps just can’t believe that people could be fraidy cats.

Let me be blunt about it, IOT colleagues: get used dealing with peoples’ fears. Wise up, because that fear might just screw the IoT before it really gains traction. Just because a reaction is irrational doesn’t mean it isn’t very, very real to those who feel it, and they might just shun your technology and/or demand draconian regulations to enforce privacy and security standards. 

That’s why I was so upset at a remark by some bright young things at the recent Wearables + Things conference. When asked about privacy and security precautions (a VERY big thing with people, since it’s their very personal bodily data that’s at risk) for their gee-whiz device, they blithely said that they were just a start-up, and they’d get to security issues after they had the device technology squared away.

WRONG, KIDS: security and privacy protections have to be a key priority from the get-go.

That’s why I was pleased to see that CES asked FTC Chair Edith Ramirez to give opening remarks at a panel on security last week, and she specifically focused on “privacy by design,” where privacy protections are baked into the product from the get-go. She emphasized that start-ups can’t get off the hook:

“‘Any device that is connected to the Internet is at risk of being hijacked,’ said Ms. Ramirez, who added that the large number of Internet-connected devices would ‘increase the number of access points’ for hackers.

Ms. Ramirez seemed to be directing her remarks at the start-ups that are making most of the products — like fitness trackers and glucose monitors — driving the so-called Internet of Things.

She said that some of these developers, in contrast to traditional hardware and software makers, ‘have not spent decades thinking about how to secure their products and services from hackers.'”

I yield to no one in my love of serendipitous discoveries of data’s value (such as the breakthrough in early diagnosis of infections in neonates by researchers from IBM and Toronto’s Hospital for Sick Children, but I think Ms. Ramirez was on target about IoT developers forcing themselves to emphasize minimization of data collection, especially when it comes to personal data:

“Beyond security, Ms. Ramirez said that technology companies needed to pay more attention to so-called data minimization, in which they collect only the personal data they need for a specific purpose and delete it permanently afterward. She directly challenged the widespread contention in the technology industry that it is necessary to collect large volumes of data because new uses might be uncovered.

‘I question the notion that we must put sensitive consumer data at risk on the off chance a company might someday discover a valuable use for the information,’ she said.

She also said that technology companies should be more transparent about the way they use personal data and should simplify their terms of use.”

Watch for a major IoT privacy pronouncement soon from the FTC.

It’s gratifying that, in addition to the panel Ms. Ramirez introduced, that CES also had an (albeit small…) area for privacy vendors.  As the WaPo reported, part of the reasons for this area is that the devices and apps are aimed at you and me, because “consumers are finding — thanks to the rise in identity theft, hacks and massive data breaches — that companies aren’t always good stewards for their information.” Dealing with privacy breaches is everyone’s business: companies, government, and you and me!

As WaPo reporter   concluded: “The whole point of the privacy area, and of many of the products being shown there, is that technology and privacy don’t have to fight. They can actually help each other. And these exhibitors — the few, the proud, the private — are happy to be here, preaching that message.”

So, let’s all resolve that 2015 when privacy and security become as big an IoT priority as innovation!


Oh, before I forget, its time for my gratuitous reference whenever I discuss IoT privacy and security, to Gen. David Petraeus (yes, the very General “Do As I Say, Not As I Do” Petraeus who faces possible federal felony charges for leaking classified documents to his lover/biographer.), who was quite enamored of the IoT when he directed the CIA. That should give you pause, no matter whether you’re an IoT user, producer, or regulator!

IoT: What Can You Do That You Couldn’t? Heavy Construction

Not sure why, but I’m particularly fascinated by how the IoT can transform parts of the economy that have been around for more than 100 years, such as the way the Union Pacific uses it to reduce derailments — and worse.

One of those tradition-bound industries where the IoT Essential TruthWhat Can You Do Now That You Couldn’t Do Before” is starting to revolutionize both daily practices and strategy is heavy construction, both for buildings and public works.

First of all, heavy construction is inherently dangerous, so anything that can be done to manage that danger is beneficial.

Lots of very heavy machinery; many people, frequently on foot; almost impossible to coordinate all of them in the past, especially as vehicles enter and leave the site.  According to OSHA, in the US alone, 796, or 20.3% of all workers killed on the job in 2003 were killed on construction sites, primarily through falls, struck by objects, electrocution or “caught-in-between.” Of those, lack of coordination probably resulted in most of the struck by objects and “caught-in-between” deaths.

One of the most exciting developments in that regard is SAP’s demonstration program with SK Solutions, which makes anti-collision software, on a construction site in Dubai. They are capitalizing on new construction cranes and construction vehicle  that have sensors built in so their real-time location can be determined instantly. SAP and SK Solutions combine sensor-based data – such as 3-D motion control, location, load weight, equipment usage and wind speed – to avoid collisions with trucks  to enhance worker safety, improve productivity and reduce costs. The site and project managers monitor the equipment via a dashboard.

Less dramatic than collision avoidance is the way that construction companies are using real-time data from the equipment to maximize operating efficiency and reduce maintenance costs through innovations such as “predictive maintenance.”  As my Boston IoT MeetUp co-director Chris Rezendes of INEX Advisors discussed at the recent Association of Equipment Management Professionals Asset Management Symposium, “instrumentation of assets” through digital plans and models, sensors, data and embedded communication devices in buildings and bridges is becoming a key differentiator in the industry. According to Rezendes:

““Everybody in tech wants to instrument your assets, inventories, operations, people and processes… They are looking at instrumenting all manner of industrial machines, equipment and more. And they’re doing it really well…. You should feel threatened, at least a little bit, by big technology companies trying to instrument your assets for you, maybe to you… I’m going to tell it to you straight: He or she who controls the intelligence–the data about those assets, inventories and areas of operation–will control that market, the customer, the regulatory environment and the supply chain. They will control you.”

What a seismic shift from the old days of heavy construction, which was largely a matter of brute force and difficult demands on operators to remain always vigilant in the midst of loud noises.  Add in the sensors that these construction crews are now embedding in bridges’ structure and in buildings to monitor a wide range of stresses and environmental conditions, and the conclusion is inescapable: every industry can and will be fundamentally altered in the coming decade as equipment and processes begin switch the requirements from brawn to brains.

My take on the IoT at CES

Here I am languishing in bitterly-cold Massachusetts, while all the cool kids are playing with toys at CES!  I’ll try to get over it and give you my impressions of the Internet of Things new product introductions, as filtered through the lens of my IoT Essential Truths:

  • Perhaps the most important development is Samsung’s whole-hearted embrace of the IoT, building on its acquisition of SmartThings.  In his keynote, Samsung CEO BK Yoon struck exactly the right notes, emphasizing the need for open standards and collaboration.Within 5 years, all new Samsung products will be IoT enabled.Don’t forget that Samsung doesn’t just make consumer products, but also critical IoT tools such as sensors and chips.  Its 3-D range sensors that can detect tiny movements may be a critical IoT components.SmartThings CEO Alex Hawkinson was part of the presentation, and stressed:

    “For the Internet of Things to be a success, it has to be open, Any device, from any platform, must be able to connect and communicate with one another. We’ve worked hard to accomplish this, and are committed to putting users first, giving them the most choice and freedom possible.”

  • If was accurate, the GoBe calorie counter could be a great Quantified Self device. I still find it waaay to time-consuming and laboriously to look up specific foods’ caloric content and enter them into an app. However, The Verge says not so fast…..  What might be feasible is the InBody Bend, to measure the result of those calories — your body fat — and your heart rate. It’s also a pedometer and measures your calories burned. Oh, yeah, the Bend also tells time. Best of all, it will go 7-8 days between charges.
  • The HereO children’s watches seem like a great product for worried parents, allowing them to locate the wee ones via GPS.
  • While I think the key to realizing my “Smart Aging” paradigm shift will primarily be tweaking mainstream IoT Quantified Self and smart home devices for seniors’ special needs, there are some issues, such as hearing loss, that particularly affect seniors. In that category, Siemens’ Smart Hearing Aid looks promising, and an interesting example of enhancing a not-so-great existing product using IoT capabilities. A key is the unobtrusive clip-on easyTek  which complements the in-ear device, and can connect (via Bluetooth) to smartphones, computers or TVs, so that the hearing aides also function as earphones for those devices. As The Verge reports, even those with good hearing might end up using it.
  • However, my two favorite CES intros both enhance a decidedly 19th-century product, the bike.They illustrate the Essential TruthWhat Can You Do Now That You Couldn’t Do Before?
    Smart Pedal

    Smart Pedal

    One is a nifty substitute for a plain-vanilla pedal, from Connected Cycle. On a day-in-day-out basis, the pedal is a Quantified Self device, recording your speed, route, incline, and calories burned.

    However, when some miscreant steals your ride, it’s the two-wheel equivalent of Find My iPhone, telling you and the cops exactly where the bike’s located.

    Ok, that’s nice, but the other bike device introduced at CES can save your life!

    Smart Bike Helmet

    In the spirit of IoT collaboration, Volvo, Ericsson & sporting goods manufacturer POC have worked together on a smart helmet.

    The bike’s and the car’s locations are both uploaded to the cloud.

    If the  helmet is connected to a bike app such as Strava, built-in warning lights warn it there’s a car nearby, while a heads-up display on the dash warns the driver at the same time.

    I can’t see Volvo gaining any competitive advantage from this, and, of course, the technology will really only be effective if every hemet and every car are equipped with it, so I hope the partners will release it for universal adoption. Who would have ever thought that the IoT could peacefully bring bicyclists and motorists together. Just shows you that with the IoT, we’ll have to re-examine a lot of long-held beliefs!