Human Side of IoT: Local Startup Empowers Forgotten Shop Floor Workers!

Let’s not forget: human workers can and must still pay a role in the IoT!

Sure, the vast majority of IoT focus is on large-scale precision and automated manufacturing (Industrie 4.0 as it is known in Germany, or the Industrial Internet here). However, an ingenious local startup, Tulip, is bringing IoT tools to the workbench and shop floor, empowering individual industrial engineers to create no-code, low-code apps that can really revolutionize things in the factory.  Yes, many jobs will be replaced by IoT tech, but with Tulip, others will be “enabled” — workers will still be there to make decisions, and they’ll be empowered as never before.

Um, I’m thinking superhuman factory Transformers, LOL!

The Tulip IoT gateway allows anyone to add sensors, tools, cameras and even “pick to light bins” (never heard that bit of shop lingo, but they looked cool in video) to the work station, without writing a line of code, because of the company’s diverse drivers support factory floor devices. It claims to “fill the gap between rigid back-end manufacturing IT systems and the dynamic operations taking place on the shop floor.”

Rony Kubat, the young MIT grad who’s the company’s co-founder is on a mission “to revolutionize manufacturing software,” as he says, because people who actually have to play a hands-on roll in product design and production on  shop floor have been ignored in the IoT, and many processes such as training are still paper-based:

“Manufacturing software needs to evolve. Legacy applications neglect the human side of manufacturing and therefore suffer from low adoption. The use of custom, expensive-to-maintain, in-house solutions is rampant. The inability of existing solutions to address the needs of people on the shop floor is driving the proliferation of paper-based workflows and the use of word processing, spreadsheet and presentation applications as the mainstay of manufacturing operations. Tulip aims to change all this through our intuitive, people-centric platform. Our system makes it easy for manufacturers to connect hands-on work processes, machines and backend IT systems through flexible self-serve manufacturing apps”.

While automation in factory floors continues to grow, manufacturers often find their hands-on workforce left behind, using paper and legacy technology. Manufacturers are seeing an enormous need to empower their workforce with intuitive digital tools. Tulip is a solution to this problem. Front-line engineers create flexible shop-floor apps that connect workers, machines and existing IT systems. These apps guide shop-floor operations enabling real-time data collection and making that data useful to workers on factory floors. Tulip’s IoT gateway integrates the devices, sensors and machines on the shop floor, making it easy to monitor and interact with previously siloed data streams (you got me there: I HATE siloed data). The platform’s self-serve analytics engine lets manufacturers turn this data into actionable insights, supporting continuous process improvement.

The company has grown quickly, and has dozens of customers in fields as varied as medical devices, pharma, and aerospace. The results are dramatic and quite varied:

  • Quality: A Deloitte analysis of Tulip’s use at Jabil, a global contract manufacturer, documented 10+% production increases. It reduced quality issues in manual assembly by more than 10%. found production yield increased by more than 10 percent, and manual assembly quality issues were reduced by 60 percent in the initial four weeks of operation.
  • Training: Other customers reduced the amount of time to train new operators by  90 percent, in a highly complicated, customized and regulated biopharmaceutical training situation: “Previously, the only way to train new operators was to walk them repeatedly through all the steps with an experienced operator and a process engineer. Tulip quickly deployed its software along with IoT gateways for the machines and devices on the process, and managed to cut training time almost by half.”
  • Time to Market: They reduced a major athletic apparel maker’s time to market by 50% for hundreds of new product variations. That required constantly evaluating the impact of dozens of different quality drivers to isolate defects’ root causes — including both manual and automated platforms. Before Tulip, it could take weeks of analysis until a process was ready for production. According to the quality engineer on the project, “I used Tulip’s apps to communicate quality issues to upstream operators in real-time. This feedback loop enabled the operators to take immediate corrective action and prevent additional defects from occurring.”

Similar to my friends at Mendix, the no-code/low-code aspect of Tulip’s Manufacturing App Platform lets process engineers without programming backgrounds create shop floor apps through interactive step-by-step work instructions. “The apps give you access through our cloud to an abundance of information and real-time analytics that can help you measure and fine-tune your manufacturing operations,” Tulip Co-Founder Natan Linder says (the whiz-kid is also chairman of 3-D printer startup Formlabs). 

Linder looked at analytics apps that let users create apps through simple tools and thought why not provide the same kind of tools for training technicians on standard operating procedures or for building product or tracking quality defects? “This is a self-service tool that a process or quality engineer can use to build apps. They can create sophisticated workflows without writing code…. Our cloud authoring environment basically allows you to just drag and drop and connect all the different faucets and links to create a sophisticated app in minutes, and deploy it to the floor, without writing code,” he says. Tulip enables sharing appropriate real-time analytics with each team member no matter where they are and to set up personal alerts for the data that’s relevant to each.

IMHO, this is a perfect example of my IoT “Essential Truth” of “empowering every worker with real-time data.”  Rather than senior management parceling out (as they saw fit) the little amount of historical data that was available in the past, now workers can share (critical verb) that data instantly and combine it with the horse sense that can only be gained by those actually doing the work for years. Miracles will follow!

Writ large, the benefits of empowering shop floor workers are potentially huge.  According to the UK Telegraph, output can increase 8-9 %, while cutting costs 7-8%, cutting costs approximately 7-8 percent. The same research estimates that industrial companies “could see as much as a 300 basis point boost to their bottom line.”

Examples of the relevant shop-floor analytics include:

  • “Show real-time metrics from the shop floor
  • Report trends in your operations
  • Send customized alerts based on user defined triggers
  • Inform key stakeholders with relevant data”

IDC Analyst John Santagate neatly sums up the argument for empowering workers through the IoT thusly:

“With all of the talk and concern around the risk of losing the human element in manufacturing, due to the increasing use of robotics, it is refreshing to see a company focus on improving the work that is still done by human hands.  We typically hear the value proposition of deploying robots and automation of improvements to efficiency, quality, and consistency.  But what if you could achieve these improvements to your manufacturing process by simply applying analytics and technology to the human effort?  This is exactly what they are working on at Tulip.  

“Data analytics is typically thought about at the machine level. Manufacturers measure things such as throughput, efficiency, and quality by applying sensors to their manufacturing equipment, capturing the data signals, and conducting analytics.  The analytics provide an understanding of the health of the manufacturing process and enable them to make any necessary changes to improve the process.  Often, such efforts are top down driven.  Management drives these projects in order to improve the performance of the business.  An alternative approach is to enable the production floor to proactively identify improvement opportunities and take action, a bottom-up approach. For this self-service approach to succeed shop-floor engineers need a flexible platform such as Tulip’s, that allows them to replace paper-based processes with technology and build the applications that enable them to manage hands-on processes.  The real time analytics and visibility of hands-on manufacturing processes from Tulip’s platform puts the opportunity to identify improvement opportunities directly in the hands of people engaged in the work cells.

“Digital transformation in manufacturing is about leveraging advanced digital technology to improve how a company operates.  But, as the manufacturing industry focuses on digital transformation it must not forget the value of the human element.  Indeed, we don’t often think about digital transformation in relation to human effort, but this is exactly the sort of thinking that can deliver some of the early wins in digital transformation. “ 

Well said — and thanks to Tulip for filling a critical and often overlooked aspect of the IoT!

I’m reminded of my old friend Steve Clay-Young, who managed the BAC’s shop in Boston, and first alerted me to the “National Home- workshop Guild” which Popular Science started in the Depression and then played a critical part in the war effort. Craftsmen who belonged all got plans and turned out quality products on their home lathes.  I can definitely see a rebirth of the concept as the cost of 3-D printers from Kubat’s other startup, Formlabs drops, and we can have the kind of home (or at least locally-based production that Eric Drexler dreamed of in his great Engines of Creation (which threw in another transformational production technology, nanotech). 

I’m clearing space in my own workshop so I can begin production on IoT/nanotech/3-D printed products. Move over, GE.

#IoT Sensor Breakthroughs When Lives Are On the Line!

One of my unchanging principles is always to look to situations where there’s a lot at stake — especially human lives — for breakthroughs in difficult issues.

Exhibit A of this principle for the IoT is sensor design, where needing to frequently service or recharge critical sensors that detect battlefield conditions can put soldiers’ lives at stake (yes, as long-time readers know, this is particularly of interest to me because my Army officer son was wounded in Iraq).

FedTech reports encouraging research at DARPA on how to create sensors that have ultra-low power requirements, can lie dormant for long periods of time and yet are exquisitely sensitive to critical changes in conditions (such as vehicle or troop movements) that might put soldiers at risk in battlefield conditions.

The  N-ZERO (Near Zero RF and Power Operations)  program is a three-year initiative to create new, low-energy battlefield sensors, particularly for use at forward operating bases where conditions can change quickly and soldiers are constantly at risk — especially if they have to service the sensors:

“State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.”

…. (the project has) the goal of developing the technological foundation for persistent, event-driven sensing capabilities in which the sensor can remain dormant, with near-zero power consumption, until awakened by an external trigger or stimulus. Examples of relevant stimuli are acoustic signatures of particular vehicle types or radio signatures of specific communications protocols. If successful, the program could extend the lifetime of remotely deployed communications and environmental sensors—also known as unattended ground sensors (UGS)—from weeks or months to years.”

A key goal is a 20-fold battery size reduction while still having the sensor last longer.

What cost-conscious pipeline operators, large ag business or “smart city” transportation director wouldn’t be interested in that kind of product as well?

According to Signal, the three-phase project is ahead of its targets. In the first part, which ended in December, the DARPA team created “zero-power receivers that can detect very weak signals — less than 70 decibel-milliwatt radio-frequency (RF) transmissions, a measure that is better than originally expected.” This is critical to the military (and would have huge benefits to business as well, since monitoring frequently must be 24/7 but reporting of background data  (vs. significant changes) would both deplete batteries while requiring processing of huge volumes of meaningless data). Accordingly, a key goal would be to create “… radio receivers that are continuously alert for friendly radio transmissions, but with near zero power consumption when transmissions are not present.” A target is  “exploitation of the energy in the signal signature itself to detect and discriminate the events of interest while rejecting noise and interference. This requires the development of passive or event-powered sensors and signal-processing circuitry. The successful development of these techniques and components could enable deployments of sensors that can remain “off” (that is, in a state that does not consume battery power), yet alert for detecting signatures of interest, resulting in greatly extended durations of operation.”

The “exploitation of .. energy in the signal signature itself sounds reminiscent of the University of Washington research I’ve reported in the past that would harness ambient back-scatter to allow battery-less wireless transmission, another key potential advance in IoT sensor networks.

The following phrases of N-ZERO will each take a year.

Let’s hope that the project is an overall success, and that the end products will also be commercialized. I’ve always felt sensor cost and power needs were potential IoT Achilles’ heels, so that would be a major boost!

IoT: LiveBlogging PTC’s LiveWorx

Got here a little late for CEO Jim Heppelman’s keynote, so here goes!

  • Vuforia: digital twin gives you everything needed for merging digital “decorations” on the physical object
  • Unique perspective: AR takes digital back to the physical. Can understand & make better decisions.
  • Virtual reality would allow much of the same. Add in 3-D printing, etc.
  • “IoT is PLM.” Says PTC might be only company prepared to do both.
  • Says their logo captures the merger of digital and physical.
  • Case studies: they partnered with Bosch’s Rexroth division. Cytropac built-in IoT connectivity–  used Creo. Full life-cycle management. Can identify patterns of usage, etc. Using PTC’s analytics capacity, machine learning analysis. Want to improve cooling efficiency (it was high at first). Model-based digital twin to monitor product in field, then design an upgrade. How can they increase cooling efficiency 30%??  Came up with new design to optimize water channel that they will build in using 3-D printing. Cool (literally!). 43% increase in cooling efficiency. The design change results in new recommendation engine that helps in sales. Replaced operating manual with 3-D that anyone can understand. (BTW: very cool stagecraft: Heppelmann walks around stage interviewing the Rexroth design team at their workstations).
  • Ooh: getting citizen developers involved!!!  Speeds process, flexibility. App shows how products are actually operating in the field. Lets sales be much more proactive in field. Reinventing CRM.  May no longer need a physical showroom — just put on the AR headset.
  • Connectivity between all assets. The digital twin is identical, not fraternal. Brings AR into factory. They can merge new manufacturing equipment with legacy ones that didn’t have connectivity.  ABB has cloud-based retrofit sensors. Thingworx can connect almost anything, makes Industry 4.0 possible. Amazing demo of a simulated 3-D disassembly and replacement.
  • Hmmm — closing graphic of his preso is a constantly rotating circular one. Anticipating my “circular company” talk on Wednesday????

Closing the Loop With Enterprise Change Management. Lewis Lawrence of Weatherford, services to petroleum industry:

  • former engineer. In charge of Weatherford’s Windchill installation (they also use Creo).
  • hard hit by the drop in gas prices
  • constant state of flux
  • 15 years of constant evolution
  • their mantra: design anywhere, build anywhere.
  • enterprise change — not just engineering.
  • hmmm: according to his graphics, their whole change process is linear. IMHO, that’s obsolete in era of constant change: must evolve to cyclical. Ponderous process…
  • collect data: anything can be added, if it’s latest

The IoT Can Even Help You Breathe Better: GCE Group’s Zen-O portable oxygen concentrator for people with respiratory problems (not actually launched yet):

  • InVMA has built IoT application using ThingWorx to let patients, docs and service providers carefully monitor data
  • GCE made radical change from their traditional business in gas control devices. Zen-O is in the consumer markets. They were very interested in connected products — especially since their key competitor launched one!
  • Goals: predictive maintenance, improved patient care, asset management, development insight.
  • Design process very collaborative, with many partners.

The Digital Value Chain: GE’s Manufacturing Journey. Robert Ibe, global IT Engineering Leader at GE Industrial Solutions:

  • supports Brilliant Factory program.
  • they design and manufacture electrical distribution equipment, 30 factories worldwide.
  • “wing-to-wing” integrated process
  • had a highly complex, obsolete legacy
  • started in 2014: they were still running really old CAD technology. 14 CAD repositories that didn’t talk to each other. 15 year old PLM software. No confidence in any of data they had.
  • They began change with PLM — that’s where the digital thread begins.  PLM is foundation for their transformation.
  • PLM misunderstood: use it to map out cohesive, cross-functional, model-based strategy. Highlight relevance of “design anywhere — manufacture anywhere.” Make PLM master of your domain. Make it critical to commercial & manufacturing. Advertise benefits & value.
  • Whole strategy based on CAD. Windchill heart of the process.
  • Rate of implementation faster than business can keep up with!
  • Process: implementation approach:
    • design systems integration
    • model-based design
    • digital thread
    • manufacturing productivity.
  • common enterprise PLM framework
  • within Windchill, can see entire “digital bill of documents.”
  • focused on becoming critical for supply chain.
  • total shift from their paper-based legacy.
  • integrated regulatory compliance with every step of design.

It’s Not Your Grandmother’s IoT: Blockchain and IoT Morph Into An Emerging Technology Powerhouse:

  • Example of claims for fair-traded coffee that I’ve used in past

Finding Business Value in IoT panel:

  • Bayer — been in IoT (injection devices for medicine) for 7 years.  Reduced a lot of parts inventory.
  • Remote control of vending machines replaces paper & pencil
  • Your team needs to evangelize for biz benefits of IoT
  • New Opportunities:
    • vision and language
    • interacting with physical world
    • problem solving.
  • Didn’t know!  Skype can do real-time translation.
  • Google Deep Mind team worked internally, cut energy costs at its server farms. 15% energy reduction.
  • Digital progress makes economic pie bigger, BUT  most people aren’t benefitting economicallly. Some may be worse off. “Great decoupling” — mushrooming economic gap. One reason is that tech affects different groups differently.
  • “Entirely possible to create inclusive prosperity” through tech!

 

WEDNESDAY

Delivering Smart City Solutions and an Open Citywide Platform to Accelerate Economic Growth and Promote New Solution Innovation, Scott McCarley, PTC:

  • $40 trillion potential benefits from smart cities
  • 1st example & starting point for many cities, is smart lightpoles. Major savings plus value added. Real benefit is building on that, with systems of systems (water, traffic, energy, etc.) — the systems don’t operate in isolation.
  • Future buildings may have built-in batteries to add to power supply. Water reclamation, etc.
  • Cities are focused on KPIs across all target markets.
  • Cornerstone systems for a city: power & grid, water/wastewater, building management, city services & infrastructure.
  • Leveraging ThingWorx to address these needs:
    • deploy out-of-box IoT solutions from a ThingWorx Solution Provider: All examples, include Aquamatix, DEPsys (grid), Sensus, All Traffic, Smoove (bike sharing).
    • leverage ThingWorx to rapidly develop new IoT solutions.
      connect to any device, rapidly develop applications, visually model systems, quickly develop new apps. Augmented reality will play a role!
    • create role-based dashboards:
      one for your own operations, another for city.
    • bring the platform to create a citywide platform.
      Sum of connected physical assets, communication networks, and smart city solutions.

Digital Supply Networks: The Smart Factory. Steven Shepley, Deloitte:

  • 3 types of systems: 1) foundational visualization solutions:  KPIs, etc. 2) advanced analytical solutions 3) cyber-physical solutions.
  • Priority smart factory solutions:
    • advanced planning (risk-adjusted MRP), dynamic sequencing, cross network.
    • value chain integration: signal-based customer/supplies integration, dynamic distribution routing/tracking, digital twin.
    • asset efficiency: predictive maintenance, real-time asset tracking intelligence, energy management
    • labor productivity: robotic and cognitive automation, augmented reality-driven efficiency, real-time safety monitoring
    • exponential tech: 3-D printing, drones, flexible robots.
  • How to be successful: think big, start small, scale fast
  • Act differently: multi-disciplinary teams,
  • sensors getting simpler, easier to connect & retrofit. National Connectors particularly good.

Global Smart Home, Smart Enterprise, and Smart Cities IoT Use Cases. Ken Herron, Unified InBox, Pte.

  • new focus on customer
  • H2M: human to machine communication is THE key to IoT success. Respect their interests.
  • Austin TX: “robot whisperer” — industrial robot company. Their robots aging out, getting out of tune, etc. Predictive analytics anticipates problems.
  • Stuttgart: connected cow — if one cow is getting sick, may spread to entire herd. Intervene.
  • Kuala Lumpur: building bot — things such as paper towel dispensers communicating with management.
  • London: Concierge chatbot — shopper browsing can chat with assistant on combining outfits.
  • Dubai: smart camera. Help find your car in mega-shopping center: read license plates, message the camera, it gives you map to the car.
  • Singapore: Shout — for natural disasters. Walks the person making the alert through process, confirms choices.
  • Stuttgart: Feinstaubalarm — occasional very bad airborne dust at certain times. Tells people with lung problems options, such as taking mass transit.
  • Singapore: Smart appliances — I always thought smart fridge was stupid, but in-fridge camera that lets you shoot a “shelfie” does make sense
  • Fulda Germany: smart clothing for military & police: full record of personal health at the moment. Neat!
  • Noida India — smart sneakers can automatically post your run results (see connection to my SmartAging concept)

Business Impact of IoT, Eric Schaeffer, Accenture:

  • Michelin delivery trucks totally reinvented, major fuel savings, other benefits.
  • manufacturing being deconstructed
  • smart, connected products are causing it
  • industrial companies must begin transformation today

Thingworx: Platform for Management Revolution. W. David Stephenson, Stephenson Strategies:

Here are key points from my presentation about how the IoT can allow radical transformation from linear & hierarchical companies to IoT-centric “circular companies” (my entire presentation can be found here):

  • The IoT can be the platform for dramatic management change that was impossible in the past.
  • Making this change requires an extraordinary shift in management thinking: from hierarchy to collaboration.
  • The results will be worth the effort: not only more efficiency & precision, but also new creativity, revenue streams, & customer loyalty. 
  • In short, it will allow total transformation!

Kickstarting America’s Digital Transformation. Aneesh Chopra & Nicholas Thompson!

  • on day one, Our President (not the buffoon) told Chopra he wanted default to be switch from closed to open government & data.
  • National Wireless Initiative: became law 1 yr. after it was introduced.  Nationwide interoperable, secure wireless system.
  • Obama wanted to harness power of Internet to grow the economy. Talked to CIO of P & G, who was focused on opening up the company to get ideas from outside.
  • Thompson big on open data, but he thinks a lot more now is closed, we’re going wrong way.
  • Interesting example of getting down cost of solar to $1 per installed watt!!
  • Thompson: growing feeling that technology isn’t serving us economically. Chopra: need to democratize the benefits.
  • Chopra talking about opening up Labor Dept. data to lead to creative job opportunities for underserved.

 

 

 

 

ThingWorx Analytics Video: microcosm of why IoT is so transformative!

I’ll speak at PTC’s LiveWorx lollapalooza later this month (ooh: act quickly and I can get you a $300 registration discount: use code EDUCATE300) on my IoT-based Circular Company meme, so I’ve been devouring everything I can about ThingWorx to prepare.

Came across a nifty 6:09 vid about one component of ThingWorx, its Analytics feature. It seems to me this video sez it all about both how you can both launch an incremental IoT strategy (a recent focus of mine, given my webinar with Mendix) that will begin to pay immediate benefits and can serve as the basis for more ambitious transformation later, especially because you’ll already have the analytical tools such as ThingWorx Analytics already installed.

What caught my eye was that Flowserve, the pump giant involved in this case, could retrofit existing pumps with retrofit sensors from National Instruments — crucial for two reasons:

  • you may have major investments in existing, durable machinery: hard to justify scrapping it just to take advantage of the IoT
  • relatively few high-end, high-cost machinery and devices have been redesigned from the ground up to incorporate IoT monitoring and operations.

Note the screen grab: each of these sensors takes 30,000 readings per second. How’s that for real-time data?  PTC refers to this as part of the “volume, velocity and variety challenge of data” with the IoT.

As a microcosm of the IoT’s benefits, this example shows how easy it is to use those massive amounts of data and how they can be used to improve understanding and performance.

There are three major components:

  • ThingWatcher:
    This is the most critical component, because it sifts through the incredible amount of data from the edge, learns what constitutes normal performance for that sensor (creating “pop-up learning flags”), and then monitors it future performance for anomalies and, as the sample video shows, delivers real-time alerts to users (without requiring human monitoring) so they can make adjustments and/or order repairs.  Finds anomalies from edge devices in real-time. Automatically observes and learns the normal state pattern for every device or sensor. It then monitors each for anomalies and delivers re- al-time alerts to end users.
  • ThingPredictor:
    For the all-important new function of predictive maintenance, two different types of ThingPredictor indicators pop up when if anomalies are detected, predicting how long it may be until failure, allowing plenty of time for less-costly, anticipatory repairs. Because the specific deviation is identified in advance, repair crews will have the needed part with them when needed, rather than having to make an additional trip back to pick up parts.

    If you ask for a standard predictive scoring you don’t specify which performance features to include and get a simple predictive score. However, you can specify several key features to evaluate and get a more detailed (and probably more helpful) answer. For example,  “if you indicate an important feature count of three, the causal scoring output will include the three most influential features for each record and the percentage weights of each feature’s influence on the score.”

  • ThingOptimizer:
    Finally, you can use “ThingOptimizer” to do some what-if calculations to decide which possible “levers,” as ThingWorx calls the key variables, could change the projections to either maximize a positive factor or minimize the negatives. “Prescriptive scoring results include both an original score (the score before any lever attributes are changed) and an optimized score (the score after optimal values are applied to the lever attributes). In addition, for each attribute identified in your data as a lever, original and optimal values are included in the prescriptive scoring results.” It sort of reminds me how the introduction of VisiCalc allowed users, for the first time, to play around with variables to see which would have the best results.
Best of all, as the video illustrates, ThingWorx Analytics would facilitate the kind of “Circular Company” I’ll address in my speech, because the exact same real-time data could simultaneously be used by operating personnel to fine tune operations and catch a problem in time for predictive maintenance, and by senior management to get an instant overview of how operations are going at all the installations. Same data, many uses.
Bottom line: a robust IoT platform could be the key to an incremental strategy to begin by improving daily operations and reducing maintenance problems, and also be the underpinning for more radical transformation as your IoT strategy becomes more advanced!  See you at LiveWorx!

Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisensehttp://www.hortidaily.com/article/31774/Hortilux-launches-Hortisense-software-suite, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

More Blockchain Synergies With IoT: Supply Chain Optimization

The more I learn about blockchain’s possible uses — this time for supply chains — the more convinced I am that it is absolutely essential to full development of the IoT’s potential.

I recently raved about blockchain’s potential to perhaps solve the IoT’s growing security and privacy challenges. Since then, I’ve discovered that it can also further streamline and optimize the supply chain, another step toward the precision that I think is such a hallmark of the IoT.

As I’ve written before, the ability to instantly share (something we could never do before) real-time data about your assembly line’s status, inventories, etc. with your supply chain can lead to unprecdented integration of the supply chain and factory, much of it on a M2M basis without any human intervention. It seems to me that the blockchain can be the perfect mechanism to bring about this synchronization.

A brief reminder that, paradoxically, it’s because blockchain entries (blocks) are shared, and distributed (vs. centralized) that it’s secure without using a trusted intermediary such as a bank, because no one participant can change an entry after it’s posted.

Complementing the IBM video I included in my last post on the subject, here’s one that I think succinctly summarizes blockchain’s benefits:

A recent LoadDelivered article detailed a number of the benefits from building your supply chain around blockchain. They paralleling the ones I mentioned in my prior post regarding its security benefits, of using blockchain to organize your supply chain (with some great links for more details):

  • “Recording the quantity and transfer of assets – like pallets, trailers, containers, etc. – as they move between supply chain nodes (Talking Logistics)
  • Tracking purchase orders, change orders, receipts, shipment notifications, or other trade-related documents
  • Assigning or verifying certifications or certain properties of physical products; for example determining if a food product is organic or fair trade (Provenance)
  • Linking physical goods to serial numbers, bar codes, digital tags like RFID, etc.
  • Sharing information about manufacturing process, assembly, delivery, and maintenance of products with suppliers and vendors.”

That kind of information, derived from real-time IoT sensor data, should be irresistible to companies compared to the relative inefficiency of today’s supply chain.

The article goes on to list a variety of benefits:

  • “Enhanced Transparency. Documenting a product’s journey across the supply chain reveals its true origin and touchpoints, which increases trust and helps eliminate the bias found in today’s opaque supply chains. Manufacturers can also reduce recalls by sharing logs with OEMs and regulators (Talking Logistics).
  • Greater Scalability. Virtually any number of participants, accessing from any number of touchpoints, is possible (Forbes).
  • Better Security. A shared, indelible ledger with codified rules could potentially eliminate the audits required by internal systems and processes (Spend Matters).
  • Increased Innovation. Opportunities abound to create new, specialized uses for the technology as a result of the decentralized architecture.”

Note that it the advantages aren’t all hard numbers, but also allowing marketing innovations, similar to the way the IoT allows companies to begin marketing their products as services because of real-time data from the products in the field. In the case of applying it to the supply chain (food products, for example), manufacturers could get a marketing advantage because they could offer objective, tamper-proof documentation of the product’s organic or non-GMO origins. Who would have thought that technology whose primary goal is increasing operating efficiency could have these other, creative benefits as well?

Applying  blockchain to the supply chain is getting serious attention, including a pilot program in the Port of Rotterdam, Europe’s largest.  IBM, Intel, Cisco and Accenture are among the blue-chip members of Hyperledger, a new open source Linux Foundation collaboration to further develop blockchain. Again, it’s the open source, decentralized aspect of blockchain that makes it so effective.

Logistics expert Adrian Gonzalez is perhaps the most bullish on blockchain’s potential to revolutionize supply chains:

“the peer-to-peer, decentralized architecture of blockchain has the potential to trigger a new wave of innovation in how supply chain applications are developed, deployed, and used….(becoming) the new operating system for Supply Chain Operating Networks

It’s also another reminder of the paradoxical wisdom of one of my IoT “Essential Truths,” that we must learn to ask “who else could share this information” rather than hoarding it as in the past. It is the very fact that blockchain data is shared that means it can’t be tampered with by a single actor.

What particularly intrigues me about widespread use of blockchain at the heart of companies’ operations and fueled by real-time data from IoT sensors and other devices is that it would ensure that privacy and security, which I otherwise fear would always be an afterthought, would instead be inextricably linked with achieving efficiency gains. That would make companies eager to embrace the blockchain, assuring their attention to privacy and security as part of the deal. That would be a definite win-win.

Blockchain must definitely be on your radar in 2017.

 

Lo and behold, right after I posted this, news that WalMart, the logistics savants, are testing blockchain for supply chain management!

 

Blockchain might be answer to IoT security woes

Could blockchain be the answer to IoT security woes?

I hope so, because I’d like to get away from my recent fixation on IoT security breaches and their consequences,  especially the Mirai botnet attack that brought a large of the Internet to its knees this Fall and the even scarier (because it involved Philips, a company that takes security seriously) white-hat hackers attack on Hue bulbs.  As I’ve written, unless IoT security is improved, the public and corporations will lose faith in it and the IoT will never develop to its full potential.

Now, there’s growing discussion that blockchain (which makes bitcoin possible), might offer a good IoT security platform.

Ironically — for something dealing with security — blockchain’s value in IoT may be because the data is shared and no one person owns it or can alter it unilaterally (BTW, this is one more example of my IoT “Essential Truth” that with the IoT data should be shared, rather than hoarded as in the past.

If you’re not familiar with blockchain, here’s an IBM video, using an example from the highly security-conscious diamond industry, that gives a nice summary of how it works and why:

The key aspects of blockchain is that it:

  • is transparent
  • can trace all aspects of actions or transactions (critical for complex sequences of actions in an IoT process)
  • is distributed: there’s a shared form of record keeping, that everyone in the process can access.
  • requires permission — everyone has permission for every step
  • is secure: no one person — even a system administrator — can alter it without group approval.

Of these, perhaps the most important aspect for IoT security is that no one person can change the blockchain unilaterally, adding something (think malware) without the action being permanently recorded and without every participant’s permission.  To add a new transaction to the blockchain, all the members must validate it by applying an algorithm to confirm its validity.

The blockchain can also increase efficiency by reducing the need for intermediaries, and it’s a much better way to handle the massive flood of data that will be generated by the IoT.

The Chain of Things think tank and consortium is taking the lead on exploring blockchain’s application to the IoT. The group describes itself as “technologists at the nexus of IoT hardware manufacturing and alternative blockchain applications.” They’ve run several blockchain hackathons, and are working on open standards for IoT blockchains.

Contrast blockchain with the current prevailing IoT security paradigm.  As Datafloq points out, it’s based on the old client-server approach, which really doesn’t work with the IoT’s complexity and variety of connections: “Connection between devices will have to exclusively go through the internet, even if they happen to be a few feet apart.”  It doesn’t make sense to try to funnel the massive amounts of data that will result from widespread deployment of billions of IoT devices and sensor through a centralized model when a decentralized, peer-to-peer alternative would be more economical and efficient.

Datafloq concludes:

“Blockchain technology is the missing link to settle scalability, privacy, and reliability concerns in the Internet of Things. Blockchain technologies could perhaps be the silver bullet needed by the IoT industry. Blockchain technology can be used in tracking billions of connected devices, enable the processing of transactions and coordination between devices; allow for significant savings to IoT industry manufacturers. This decentralized approach would eliminate single points of failure, creating a more resilient ecosystem for devices to run on. The cryptographic algorithms used by blockchains, would make consumer data more private.”

I love it: paradoxically, sharing data makes it more secure!  Until something better comes along and/or the nature of IoT strategy challenges changes, it seems to me this should be the basis for secure IoT data transmission!

 

 

 

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

Siemens’s MindSphere: from automation to digitalization

Perhaps the most important component of a successful IoT transformation is building it on a robust platform, because that alone can let your company go beyond random IoT experiments to achieve an integrated IoT strategy that can add new components systematically and create synergistic benefits by combining the various aspects of the program.

A good starting point for discussion of such platforms is a description of the eight key platform components as detailed by IoT Analytics:

  1. “Connectivity & normalization: brings different protocols and different data formats into one ‘software’  interface ensuring accurate data streaming and interaction with all devices.
  2. Device management: ensures the connected ‘things’ are working properly, seamlessly running patches and updates for software and applications running on the device or edge gateways.
  3. Database: scalable storage of device data brings the requirements for hybrid cloud-based databases to a new level in terms of data volume, variety, velocity and veracity.
  4. Processing & action management: brings data to life with rule-based event-action-triggers enabling execution of ‘smart’ actions based on specific sensor data.
  5. Analytics: performs a range of complex analysis from basic data clustering and deep machine learning to predictive analytics extracting the most value out of the IoT data-stream.
  6. Visualization: enables humans to see patterns and observe trends from visualization dashboards where data is vividly portrayed through line-, stacked-, or pie charts, 2D- or even 3D-models.
  7. Additional tools: allow IoT developers prototype, test and market the IoT use case creating platform ecosystem apps for visualizing, managing and controlling connected devices.
  8. External interfaces: integrate with 3rd-party systems and the rest of the wider IT-ecosystem via built-in application programming interfaces (API), software development kits (SDK), and gateways.”

Despite (or because of, the complexity,) I think this is a decent description, because a robust IoT platf0rm really must encompass so many functions. The eight points give a basis for deciding whether what a company hawks as an IoT platform really deserves that title or really constitutes only part of the necessary whole (Aside: it’s also a great illustration of my Essential Truth that, instead of hoarding data as in the past, we must begin to ask “who else can use this data?” either inside the company or, potentially, outside, then use technology such as an IoT platform to integrate all those data uses productively.).

During my recent Barcelona trip (disclaimer: Siemens paid my way and arranged special access to some of its key decision makers, but made no attempt to limit my editorial judgment) I interviewed the company’s Chief Strategy Officer, Dr. Horst J. Kayser, who made it clear (as I mentioned in my earlier post about Siemens) that one of the advantages the company has over pure-play software firms is that it can apply its software offerings internally first and tweak them there, because of its 169-year heritage as a manufacturer, and “sits on a vast program of automation.”

Siemens’s IoT platform, MindSphere  is a collaboration with SAP, using the latter’s vast HANA cloud.  It ties together all components of Siemens’s IoT offerings, including data analytics, connectivity capabilities, developers’ tools, applications and services. MindSphere focuses on monitoring manufacturing assets’ real-time status, to evaluate and use customers’ data, producing insights that can cut production costs, improve performance, and even switch to predictive maintenance. Its Mind Connect Nano collects data from the assets and transferring it to MindSphere.

The “digital twin” is integrated throughout the MindSphere platform. Kayser says that “there’s a digital twin of the entire process, from conception through the manufacturing and maintenance, and it feeds the data back into the model.” In fact,  one dramatic example of the concept in action is the new Maserati Ghibli, created in 16 months instead of 30 — almost 50% less time than for prior models.  Using the Teamcenter PLM software, the team was able to virtually develop and extensively test the car before anything was created physically.

IMHO, Mindsphere and components such as Teamware might really be the key to actualizing my dream of the circular company, in this case with the IoT-based real-time digital twin at the heart of the enterprise — as Kayser said, “everything is done through one consistent data set.)” I hope to explore my concept, and the benefits I think it can produce, more with the Siemens strategists in the future!  I tried the idea out on several of them in Barcelona, and no one laughed, so we’ll see…

As with the company’s rail digitization services that I mentioned in my earlier post, there’s an in-house guinea pig for MindSphere as well: the company’s “Factory of the Future” in Amberg. The plant manufactures Simatic controllers, the key to the company’s automation products and services, to which digitalization is now being added as part of the company’s Industrie 4.0 IoT plan for manufacturing (paralleling GE’s “Industrial Internet.”). As you may be aware, Siemens’s efforts in this area are a subset of a formal German government/industry initiative — I  doubt seriously we’ll see this in the U.S. under Trump.

The results of digitalization at Amberg are astonishing by any measure, especially the ultimate accomplishment: a  99.9988 percent rate (no typo!!), which is even more incredible when you realize this is not mass production with long, uniform production runs: the plant manufactures more than 1,000 varieties of the controllers, with a total volume of 12 million Simatic products each year, or about one per second.  Here are some of the other benefits of what they call an emphasis on optimizing the entire value chain:

  • shorter delivery time: 24 hours from order.
  • time to market reduced by up to 50%.
  • cost savings of up to 25%

Of course there are several other robust IoT platforms, including GE’s Predix and PTC’s Thingworx, but my analysis shows that Mindsphere meets IoT Analytics’ criteria, and, combined with the company’s long background in manufacturing and automation, should make it a real player in the industrial internet. Bravo!

When Philips’s Hue Bulbs Are Attacked, IoT Security Becomes Even Bigger Issue

OK, what will it take to make security (and privacy) job #1 for the IoT industry?

The recent Mirai DDoS attack should have been enough to get IoT device companies to increase their security and privacy efforts.

Now we hear that the Hue bulbs from Philips, a global electronics and IoT leader that DOES emphasize security and doesn’t cut corners, have been the focus of a potentially devastating attack (um, just wonderin’: how does triggering mass epileptic seizures through your light bulbs grab you?).

Since it’s abundantly clear that the US president-elect would rather cut regulations than add needed ones (just announcing that, for every new regulation, two must be cut), the burden of improving IoT security will lie squarely on the shoulders of the industry itself. BTW:kudos in parting to outgoing FTC Chair Edith Ramirez, who has made intelligent, workable IoT regulations in collaboration with self-help efforts by the industry a priority. Will we be up to the security challenge, or, as I’ve warned before, will security and privacy lapses totally undermine the IoT in its adolescence by losing the public and corporate confidence and trust that is so crucial in this particular industry?

Count me among the dubious.

Here’s what happened in this truly scary episode, which, for the first time, presages making the focus of an IoT hack an entire city, by exploiting what might otherwise be a smart city/smart grid virtue: a large installed base of smart bulbs, all within communication distance of each other. The weapons? An off-the-shelf drone and an USB stick (the same team found that a car will also do nicely as an attack vector). Fortunately, the perpetrators in this case were a group of white-hat hackers from the Weizmann Institute of Science in Israel and Dalhousie University in Canada, who reported it to Philips so they could implement additional protections, which the company did.

Here’s what they wrote about their plan of attack:

“In this paper we describe a new type of threat in which adjacent IoT devices will infect each other with a worm that will spread explosively over large areas in a kind of nuclear chain reaction (my emphasis), provided that the density of compatible IoT devices exceeds a certain critical mass. In particular, we developed and verified such an infection using the popular Philips Hue smart lamps as a platform.

“The worm spreads by jumping directly from one lamp to its neighbors, using only their built-in ZigBee wireless connectivity and their physical proximity. The attack can start by plugging in a single infected bulb anywhere in the city, and then catastrophically spread everywhere within minutes, enabling the attacker to turn all the city lights on or off, permanently brick them, or exploit them in a massive DDOS attack (my emphasis). To demonstrate the risks involved, we use results from percolation theory to estimate the critical mass of installed devices for a typical city such as Paris whose area is about 105 square kilometers: The chain reaction will fizzle if there are fewer than about 15,000 randomly located smart lights in the whole city, but will spread everywhere when the number exceeds this critical mass (which had almost certainly been surpassed already (my emphasis).

“To make such an attack possible, we had to find a way to remotely yank already installed lamps from their current networks, and to perform over-the-air firmware updates. We overcame the first problem by discovering and exploiting a major bug in the implementation of the Touchlink part of the ZigBee Light Link protocol, which is supposed to stop such attempts with a proximity test. To solve the second problem, we developed a new version of a side channel attack to extract the global AES-CCM key that Philips uses to encrypt and authenticate new firmware. We used only readily available equipment costing a few hundred dollars, and managed to find this key without seeing any actual updates. This demonstrates once again how difficult it is to get security right even for a large company that uses standard cryptographic techniques to protect a major product.”

Again, this wasn’t one of those fly-by-night Chinese manufacturers of low-end IoT devices, but Philips, a major, respected, and vigilant corporation.

As for the possible results? It could:

  •  jam WiFi connections
  • disturb the electric grid
  • brick devices making entire critical systems inoperable
  • and, as I mentioned before, cause mass epileptic seizures.

As for the specifics, according to TechHive, the researchers installed Hue bulbs in several offices in an office building in the Israeli city of Beer Sheva. In a nice flair for the ironic, the building housed several computer security firms and the Israeli Computer Emergency Response Team.  They attached the attack kit on the USB stick to a drone, and flew it toward the building from 350 meters away. When they got to the building they took over the bulbs and made them flash the SOS signal in Morse Code.

The researchers”were able to bypass any prohibitions against remote access of the networked light bulbs, and then install malicious firmware. At that point the researchers were able to block further wireless updates, which apparently made the infection irreversible. ‘There is no other method of reprogramming these [infected] devices without full disassemble (which is not feasible). Any old stock would also need to be recalled, as any devices with vulnerable firmware can be infected as soon as power is applied.’”

Worst of all, the attack was against Zigbee, one of the most robust and widely-used IoT protocols, an IoT favorite because Zigbee networks tend to be cheaper and simpler than WiFi or BlueTooth.

The attack points up one of the critical ambiguities about the IoT. On one hand, the fact that it allows networking of devices leads to “network effects,” where each device becomes more valuable because of the synergies with other IoT devices. On the other hand, that same networking and use of open standards means that penetrating one device can mean ultimately penetrating millions and compounding the damage.


I’m hoping against hope that when Trump’s team tries to implement cyber-warfare protections they’ll extend the scope to include the IoT because of this specific threat. If they do, they’ll realize that you can’t just say yes cyber-security and no, regulations. In the messy world of actually governing, rather than issuing categorical dictums, you sometimes have to embrace the messy world of ambiguity.  

What do you think?