Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels

Right after I submitted my final manuscript for The Future is Smart I had a chance to spend an hour with old friend Jason Daniels (we collaborated on a series of “21st Century Homeland Security Tips You Won’t Hear From Officials” videos back when I was a homeland security theorist) on his “Studio @ 50 Oliver” podcast.

We covered just about every topic I hit in the book, with a heavy emphasis on the attitude shifts (“IoT Essential Truths” needed to really capitalize on the IoT and the bleeding-edge concept I introduce at the end of the book, the “Circular Corporation,” with departments and individuals (even including your supply chain, distribution network and customers, if you choose) in a continuous, circular management style revolving around a shared real-time IoT hub.  Hope you’ll enjoy it!

IoT Design Manifesto 1.0: great starting point for your IoT strategy & products!

Late in the process of writing my forthcoming IoT strategy book, The Future Is Smart, I happened on the “IoT Design Manifesto 1.0” site. I wish I’d found it earlier so I could have featured it more prominently in the book.

The reason is that the manifesto is the product (bear in mind that the original team of participants designed it to be dynamic and iterative, so it will doubtlessly change over time) of a collaborative process involving both product designers and IoT thought leaders such as the great Rob van Kranenburg. As I’ve written ad nauseam, I think of the IoT as inherently collaborative, since sharing data rather than hoarding it can lead to synergistic benefits, and collaborative approaches such as smart cities get their strength from an evolving mishmash of individual actions that gets progressively more valuable.

From the names, I suspect most of the Manifesto’s authors are European. That’s important, since Europeans seem to be more concerned, on the whole, about IoT privacy and security than their American counterparts, witness the EU-driven “privacy by design” concept, which makes privacy a priority from the beginning of the design process.

At any rate, I was impressed that the manifesto combines both philosophical and economic priorities, and does so in a way that should maximize the benefits and minimize the problems.

I’m going to take the liberty of including the entire manifesto, with my side comments:

  1. WE DON’T BELIEVE THE HYPE. We pledge to be skeptical of the cult of the new — just slapping the Internet onto a product isn’t the answer, Monetizing only through connectivity rarely guarantees sustainable commercial success.
    (Comment: this is like my “just because you can do it doesn’t mean you should” warning: if making a product “smart” doesn’t add real value, why do it?)*
  2. WE DESIGN USEFUL THINGS. Value comes from products that are purposeful. Our commitment is to design products that have a meaningful impact on people’s lives; IoT technologies are merely tools to enable that.
    (Comment: see number 1!)
  3. “WE AIM FOR THE WIN-WIN-WIN. A complex web of stakeholders is forming around IoT products: from users, to businesses, and everyone in between. We design so that there is a win for everybody in this elaborate exchange.
    (Comment:This is a big one in my mind, and relates to my IoT Essential Truth #2 — share data, don’t hoard it — when you share IoT data, even with competitors in some cases [think of IFTTT “recipes”] — you can create services that benefit customers, companies, and even the greater good, such as reducing global warming).
  4. WE KEEP EVERYONE AND EVERYTHING SECURE. With connectivity comes the potential for external security threats executed through the product itself, which comes with serious consequences. We are committed to protecting our users from these dangers, whatever they may be.
    (Comment: Amen! as I’ve written ad nauseum, protecting privacy and security must be THE highest IoT priority — see next post below!).
  5. WE BUILD AND PROMOTE A CULTURE OF PRIVACY. Equally severe threats can also come from within. Trust is violated when personal  information gathered by the product is handled carelessly. We build and promote a culture of integrity where the norm is to handle data with care.
    (Comment:See 4!).
  6. WE ARE DELIBERATE ABOUT WHAT DATA WE COLLECT. This is not the business of hoarding data; we only collect data that serves the utility of the product and service. Therefore, identifying what those data points are must be conscientious and deliberate.
    (Comment: this is a delicate issue, because you may find data that wasn’t originally valuable becomes so as new correlations and links are established. However, just collecting data willy-nilly and depositing it in an unstructured “data lake” for possible use later is asking for trouble if your security is breeched.).
  7. WE MAKE THE PARTIES ASSOCIATED WITH AN IOT PRODUCT EXPLICIT. IoT products are uniquely connected, making the flow of information among stakeholders open and fluid. This results in a complex, ambiguous, and invisible network. Our responsibility is to make the dynamics among those parties more visible and understandable to everyone.
    (Comment: see what I wrote in the last post, where I recommended companies spell out their privacy and usage policies in plain language and completely).
  8. WE EMPOWER USERS TO BE THE MASTERS OF THEIR OWN DOMAIN. Users often do not have control over their role within the network of stakeholders surrounding an IoT product. We believe that users should be empowered to set the boundaries of how their data is accessed and how they are engaged with via the product.
    (Comment: consistent with prior points, make sure that any permissions are explicit and  opt-in rather than opt-out to protect users — and yourself (rather avoid lawsuits? Thought so…)
  9. WE DESIGN THINGS FOR THEIR LIFETIME. Currently physical products and digital services tend to be built to have different lifespans. In an IoT product features are codependent, so lifespans need to be aligned. We design products and their services to be bound as a single, durable entity.
    (Comment: consistent with the emerging circular economy concept, this can be a win-win-win for you, your customer and the environment. Products that don’t become obsolete quickly but can be upgraded either by hardware or software will delight customers and build their loyalty [remember that if you continue to meet their needs and desires, there’s less incentive for customers to check out competitors and possibly be wooed away!). Products that you enhance over time and particularly those you market as services instead of sell will also stay out of landfills and reduce your pduction costs.
  10. IN THE END, WE ARE HUMAN BEINGS. Design is an impactful act. With our work, we have the power to affect relationships between people and technology, as well as among people.  We don’t use this influence to only make profits or create robot overlords; instead, it is our responsibility to use design to help people, communities, and societies  thrive.
    Comment: yea designers!!)

I’ve personally signed onto the Manifesto, and do hope to contribute in the future (would like something explicit about the environment in it, but who knows) and urge you to do the same. More important, why start from scratch to come up with your own product design guidelines, when you can capitalize on the hard work that’s gone into the Manifesto as a starting point and modify it for your own unique needs?

*BTW: I was contemptuous of the first IoT electric toothbrush I wrote about, but since talked to a leader in the field who convinced me that it could actually revolutionize the practice of dentistry for the better by providing objective proof that  patient had brushed frequently and correctly. My bad!

iQ handheld ultrasound: another game-changing IoT health device

As the Red Sox’ Joe Castiglione might say, “Can you believe it?” (I should add a few more question marks to underscore exactly how unbelievable this IoT device is).

That’s my reaction to the latest astounding IoT medical device, the iQ handheld ultrasound, which attaches to a smartphone.

I was mesmerized by the headline on a story about the Butterfly iQ: “Doctor says he diagnosed his own cancer with iPhone ultrasound machine.” (spoiler alert: he was operated on to remove the tumor, and is OK).

Then there’s the marketing pitch: “Whole body imaging. Under $2K.” (that’s as opposed to $115,000 for the average conventional machine).


The video is a must watch: the doctors seem truly amazed by its versatility and ease-of-use — not to mention it can be accessed instantly in a life-or-death situation. As one is quoted saying, “This blows up the entire ultrasound playing field.”

It won’t be on the market until next year, but the FDA has already approved the iQ for diagnosis in 13 applications.  Even more amazing, due to advanced electronics, it uses a single probe instead of three, and can document conditions from the superficial to deep inside the body. The system fits in a pants pocket and simply attaches to the doctor’s smartphone.

As incredible as the iQ will be in the US, think of how it will probably bring ultrasound to developing nations worldwide for the first time!

Another video discusses the engineering, which reduced the entire bulky ultrasound machine to a far-less costly chip, (including a lot of signal processing and computational power) and capitalizes on technologies developed for consumer electronics. The approach doesn’t just equal the traditional piezioelectric technology, but surpasses it. with power that would cost more than $100,000 with a conventional machine.

In terms of manufacturing, Butterfly can use the same chip machines used to produce consumer goods such as smartphones, and can print nearly 100 ultrasound machines on less than one disk.

I thought instantly of my go-to “what can you do with the IoT that you couldn’t do before” device, the Kardia EKG on the back of my iPhone (I met a woman recently who said her Mass General cardiologist prescribes it for all of his patients). Both are absolute game changers, in terms of ease of access, lower cost, allowing on-the-spot monitoring and even potentially empowering patients (Yet another tool to make my SmartAging concept possible).

Oh, and did I mention that the iQ’s Artificial Intelligence will guide even inexperienced personnel to do high quality imaging within a few seconds?

Bottom line: if you talk to someone who doesn’t believe the IoT’s potential to make incredible changes in every aspect of our lives, just say: iQ. Wow!

Mycroft Brings Open-Source Revolution to Home Assistants

Brilliant!  Crowd-funded (even better!) Mycroft brings the rich potential of open-source to the growing field of digital home assistants.   I suspect it won’t be long until it claims a major part of the field, because the Mycroft platform can evolve and grow exponentially by capitalizing on the contributions of many, many people, not unlike the way IFTTT has with its crowd-sourced smart home “recipes.”

According to a fascinating ZD Net interview with its developer, Joshua Montgomery, his motivation was not profit per se, but to create a general AI intelligence system that would transform a start-up space he was re-developing:

“He wanted to create the type of artificial intelligence platform that ‘if you spoke to it when you walked in the room, it could control the music, control the lights, the doors’ and more.”


Montgomery wanted to do this through an open-source voice control system but for there wasn’t an open source equivalent to Siri or Alexa.  After building the natural language, open-source AI system to fill that need (tag line, “An Artificial Intelligence for Everyone”) he decided to build a “reference device” as the reporter terms it (gotta love that techno speak. In other words, a hardware device that could demonstrate the system). That in turn led to a crowdsourced campaign on Kickstarter and Backerkit to fund the home hub, which is based on the old chestnut of the IoT, Raspberry Pi. The result is a squat, cute (looks like a smiley face) unit, with a high-quality speaker.  

Most important, when the development team is done with the AI platform, Mycroft will release all of the Mycroft AI code under GPL V3, inviting the open-source community to capitalize and improve on it.  That will place Mycroft squarely in the open-source heritage of Linux and Mozilla.

Among other benefits, Mycroft will use natural language processing to activate a wide range of online services, from Netflix to Pandora, as well as control your smart home devices.

Mycroft illustrates one of my favorite IoT Essential Truths: we need to share data, not hoard it. I don’t care how brilliant your engineers are: they are only a tiny percentage of the world population, with only a limited amount of personal experience (especially if they’re callow millennials) and interests. When you go open source and throw your data open to the world, the progress will be greater as will be the benefits — to you and humanity.

A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

I’ve been giving a lot of thought recently about how my vision of I0T-based “SmartAging” through a combination of:

  • Quantified Self health apps and devices to improve seniors’ health and turn their health care into more of a partnership with their doctors
  • and smart home devices that would make it easier to manage their homes and “age in place” rather than being institutionalized

could meld with the exciting developments in smart city devices and strategy.  I believe the results could make seniors happier and healthier, reduce the burdens on city budgets of growing aging populations, and spur unprecedented creativity and innovation on these issues. Here’s my vision of how the two might come together. I’d welcome your thoughts on the concept!


A Vision for Dynamic and Lower-Cost Aging in Cities Through “SmartAging”

It’s clear business as usual in dealing with aging in America won’t work anymore.  10,000 baby boomers a day retire and draw Social Security. Between now and 2050, seniors will be the fastest growing segment of the population.  How can we stretch government programs and private resources so seniors won’t be sickly and live in abject poverty, yet millennials won’t be bankrupted either?

As someone in that category, this is of more than passing interest to me! 

I propose a new approach to aging in cities, marrying advanced but affordable personal technology, new ways of thinking about aging, and hybrid formal and ad hoc public-private partnerships, which can deal with at least part of the aging issue. Carving out some seniors from needing services through self-reliance and enhancing their well-being would allow focusing scarce resources on the most vulnerable remaining seniors. 

The approach is made possible not only by the plummeting cost and increasing power of personal technology but also the exciting new forms of collaboration it has made possible.

The proposal’s basis is the Internet of Things (IoT).  There is already a growing range of IoT wearable devices to track health indicators such as heart rates and promoting fitness activities, and IoT “smart home” devices controlling lighting, heat, and other systems. The framework visualized here would easily integrate these devices, but they can be expensive, so it is designed so seniors could benefit from the project without having to buy the dedicated devices.

This proposal does not attempt to be an all-encompassing solution to every issue of aging, but instead will create a robust, open platform that government agencies, companies, civic groups, and individuals can build upon to reduce burdens on individual seniors, improve their health and quality of life, and cut the cost of and need for some government services. Even better, the same platform and technologies can be used to enhance the lives of others throughout the life spectrum as well, increasing its value and versatility.

The proposal is for two complementary projects to create a basis for later, more ambitious one.

Each would be valuable in its own right and perhaps reach differing portions of the senior population. Combined, they would provide seniors and their families with a wealth of real-time information to improve health, mobility, and quality of life, while cutting their living costs and reducing social isolation.  The result would be a mutually-beneficial public-private partnerships and, one hopes, improve not only seniors’ lives, but also their feeling of connectedness to the broader community. Rather than treat seniors as passive recipients of services, it would empower them to be as self-reliant as possible given their varying circumstances. They would both be based on the Lifeline program in Massachusetts (and similar ones elsewhere) that give low-income residents basic Internet service at low cost.

Locally, Boston already has a record of achievement in internet-based services to connect seniors with others, starting with the simple and tremendously effective SnowCrew program that Joe Porcelli launched in the Jamaica Plain neighborhood. This later expanded nationwide into the NextDoor site and app, which could easily be used by participants in the program.

The first project would capitalize on the widespread popularity of the new digital “home assistants,” such as the Amazon Echo and Google Home.  One version of the Echo can be bought for as little as $49, with bulk buying also possible.  A critical advantage of these devices, rather than home monitoring devices specifically for seniors, is that they are mainstream, benefit from the “network effects” phenomenon that means each becomes more valuable as more are in use, and don’t stigmatize the users or shout I’M ELDERLY. A person who is in their 50s could buy one now, use it for routine household needs, and then add additional age-related functions (see below) as they age, amortizing the cost.

The most important thing to remember about these devices regarding aging is the fact that they are voice-activated, so they would be especially attractive to seniors who are tech-averse or simply unable to navigate complex devices. The user simply speaks a command to activate the device.

The Echo (one presumes a variation on the same theme will soon be the case with the “Home,” Apple’s forthcoming “Home Pod” and other devices that might enter the space in the future) gets its power from “skills,” or apps, that are developed by third-party developers. They give it the power, via voice, to deliver a wide range of content on every topic under the sun.  Several already released “skills” give an idea of how this might work:

  • Ask My Buddy helps users in an emergency. In an emergency, it can send phone calls or text messages to up to five contacts. A user would say, “Alexa, ask my buddy Bob to send help” and Bob would get an alert to check in on his friend.
  • Linked thermostats can raise or lower the temperature a precise amount, and lights can also be turned on or off or adjusted for specific needs.
  • Marvee can keep seniors in touch w/ their families and lessen social isolation.
  • The Fitbit skill allows the user who also has a Fitbit to trace their physical activity, encouraging fitness.

Again looking to Boston for precedent, related apps include the Children’s Hospital and Kids’ MD ones from Children’s Hospital. Imagine how helpful it could be if the gerontology departments of hospitals provided similar “skills” for seniors!

Most important to making this service work would be to capitalize on the growing number of city-based open-data programs that release a variety of important real-time data bases which independent developers mash up to create “skills”  such as real-time transit apps.  The author was a consultant to the District of Columbia in 2008 when it began this data-based “smart city” approach with the Apps for Democracy contest, which has spawned similar projects worldwide since then.  When real-time city data is released, the result is almost magic: individuals and groups see different value in the same data, and develop new services that use it in a variety of ways at no expense to taxpayers.

The key to this half of the pilot programs would be creating a working relationship with local Meetups such as those already created in various cities for Alexa programmers, which would facilitate the relationship) to stage one or more high-visibility hackathons. Programmers from major public and social service institutions serving seniors, colleges and universities, and others with an interest in the subject could come together to create “skills” based on the local public data feeds, to serve seniors’ needs, such as:

  • health
  • nutrition
  • mobility
  • city services
  • overcoming social isolation (one might ask how a technological program could help with this need. The City of Barcelona, generally acknowledged as the world’s “smartest” city, is circulating an RFP right now with that goal and already has a “smart” program for seniors who need immediate help to call for it) .

“Skills” are proliferating at a dizzying rate, and ones developed for one city can be easily adapted for localized use elsewhere.

Such a project would have no direct costs, but the city and/or a non-profit might negotiate lower bulk-buying rates for the devices, especially the l0wer price ($59 list) Amazon Dot, similar to the contract between the Japan Post Group, IBM, and Apple to buy 5 million iPads and equip them with senior-friendly apps from IBM which the Post Group would then furnish to Japanese seniors. Conceivably, the Dots bought this way might come preloaded with the localized and senior-friendly “skills.” 

The second component of a prototype SmartAging city program would make the wide range of local real-time location-based data available by various cities usable by cities joininh the 100+ cities worldwide who have joined the “Things Network” that create free citywide data networks specifically for Internet of Things use.

The concept uses technology called LoRaWAN: low-cost (the 10 units used in Amsterdam, each with a signal range of about 6 miles, only cost $12,000 total — much cheaper ones will be released soon), and were deployed and operative in less than a month!  The cost and difficulty of linking an entire city has plummeted as more cities join, and the global project is inherently collaborative.

With Things Network, entire cities would be converted into Internet of Things laboratories, empowering anyone (city agencies, companies, educational institutions, non-profits, individuals) to experiment with offering new services that would use the no-cost data sharing network.  In cities that already host Things Networks,  availability of the networks has spawned a wide range of novel local services.  For example, in Dunblane, Scotland, the team is developing a ThingsNetwork- based alarming system for people with dementia.  Even better, as the rapid spread of citywide open data programs and resulting open source apps to capitalize on them has illustrated, a neat app or service created in one city could easily be copied and enhanced elsewhere — virtuous imitation!

The critical component of the prototype programs would be to hold one or more hackathons once the network was in place.  The same range of participants would be invited, and since the Things Network could also serve a wide range of other public/private uses for all age groups and demographics, more developers and subject matter experts might participate in the hackathon, increasing the chances of more robust and multi-purpose applications resulting.

These citywide networks could eventually become the heart of ambitious two-way services for seniors based on real-time data, similar to those in Bolsano, Italy

The Internet of Things and smart cities will become widespread soon simply because of lowering costs and greater versatility, whether this prototype project for seniors happens or not. The suggestions above would make sure that the IoT serves the public interest by harnessing IoT data to improve seniors’ health, reduce their social isolation, and make them more self-sufficient. It will reduce the burden on traditional government services to seniors while unlocking creative new services we can’t even visualize today to enhance the aging process.

Hippo: IoT-based paradigm shift from passive to active insurance companies

I’m a big advocate of incremental IoT strategies (check out my recent webinar with Mendix on this approach), for existing companies that want to test the waters first. However, I’m enough of a rabble-rouser to also applaud those who jump right in with paradigm-busting IoT (and big data) startups.

Enter, stage left, a nimble (LOL) new home insurance company: Hippo!

IMHO, Hippo’s important both in its own right and also as a harbinger of other startups that will exploit the IoT and big data to break with years of tradition in the insurance industry as a whole, no longer sitting passively to pay out claims when something bad happens, but seizing the initiative to reduce risk, which is what insurance started out to do.

After all, when a Mr. B. Franklin (I’ll tell you: plunk that guy down in 2017 and he’d create a start-up addressing an unmet need within a week!) and his fellow firefighters launched the Philadelphia Contributionship in 1752, one of the first things they did was to send out appraisers to determine the risk of a house burning and suggest ways to make it safer.

Left to right: Eyal Navon, CTO and cofounder; Assaf Wand, CEO cofounder of Hippo

In fact, there’s actually a term for this kind of web-based insurance, coined by McKinsey: insuretec” (practicing what he preached, one of Hippo’s founders had been at McKinsey, and what intrigued the founders about insurance as a target was that it’s a huge industry, hasn’t really innovate for years, and didn’t focus on the customer experience.).

I talked recently to two key staffers, Head of Product Aviad Pinkovezky and Head of Marketing, Growth and Product Innovation Jason White.  They outlined a radically new strategy “with focused attention on loss reduction”:

  • sell directly to consumers instead of using agents
  • cut out legacy coverage leftovers, such as fur coats, silverware & stock certificates in a home safe) and instead cover laptops, water leaks, etc.
  • Leverage data to inform customers about appliances they own that might be more likely to cause problems, and communicate with them on a continuous basis about steps such as cleaning gutters that could reduce problems.

According to Pinkovezky, the current companies “are reactive, responding to something that takes place. Consumer-to-company interaction is non-continuous, with almost nothing between paying premiums and filing a claim.  Hippo wants to build must more of a continuous relationship, providing value added,” such as an IoT-based water-leak detection device that new customers receive.

At the same time, White said that the company is still somewhat limited in what if can do to reduce risk because so much of it isn’t really from factors such as theft (data speaks: he said thefts actually constitute little of claims) but from one, measured by frequency and amount of damage (according to their analysis) that’s beyond their control: weather. As I pointed out, that’s probably going to constitute more of a risk in the foreseeable future due to global warming.

Hippo also plans a high-tech, high-touch strategy, that would couple technnology with a human aspect that’s needed in a stressful situation such as a house fire or flood. According to Forbes:

The company acknowledges that its customers rely on Hippo to protect their largest assets, and that insurance claims often derive from stressful experiences. In light of this, Hippo offers comprehensive, compassionate concierge services to help home owners find hotels when a home becomes unlivable, and to supervise repair contractors when damage occurs.”

While offering new services, the company has firm roots in the non-insuretech world, because its policies are owned and covered by Topa, which was founded more than 30 years ago.

Bottom line: if you’re casting about for an IoT-based startup opportunity, you’d do well to use the lens McKinsey applied to insurance: look for an industry that’s tradition-bound, and tends to react to change rather than initiate it (REMEMBER: a key element of the IoT paradigm shift is that, for the first time, we can piece “universal blindness” and really see inside things to gauge how they are working [or not] — the challenge is to capitalize on that new-found data). 

IoT: LiveBlogging PTC’s LiveWorx

Got here a little late for CEO Jim Heppelman’s keynote, so here goes!

  • Vuforia: digital twin gives you everything needed for merging digital “decorations” on the physical object
  • Unique perspective: AR takes digital back to the physical. Can understand & make better decisions.
  • Virtual reality would allow much of the same. Add in 3-D printing, etc.
  • “IoT is PLM.” Says PTC might be only company prepared to do both.
  • Says their logo captures the merger of digital and physical.
  • Case studies: they partnered with Bosch’s Rexroth division. Cytropac built-in IoT connectivity–  used Creo. Full life-cycle management. Can identify patterns of usage, etc. Using PTC’s analytics capacity, machine learning analysis. Want to improve cooling efficiency (it was high at first). Model-based digital twin to monitor product in field, then design an upgrade. How can they increase cooling efficiency 30%??  Came up with new design to optimize water channel that they will build in using 3-D printing. Cool (literally!). 43% increase in cooling efficiency. The design change results in new recommendation engine that helps in sales. Replaced operating manual with 3-D that anyone can understand. (BTW: very cool stagecraft: Heppelmann walks around stage interviewing the Rexroth design team at their workstations).
  • Ooh: getting citizen developers involved!!!  Speeds process, flexibility. App shows how products are actually operating in the field. Lets sales be much more proactive in field. Reinventing CRM.  May no longer need a physical showroom — just put on the AR headset.
  • Connectivity between all assets. The digital twin is identical, not fraternal. Brings AR into factory. They can merge new manufacturing equipment with legacy ones that didn’t have connectivity.  ABB has cloud-based retrofit sensors. Thingworx can connect almost anything, makes Industry 4.0 possible. Amazing demo of a simulated 3-D disassembly and replacement.
  • Hmmm — closing graphic of his preso is a constantly rotating circular one. Anticipating my “circular company” talk on Wednesday????

Closing the Loop With Enterprise Change Management. Lewis Lawrence of Weatherford, services to petroleum industry:

  • former engineer. In charge of Weatherford’s Windchill installation (they also use Creo).
  • hard hit by the drop in gas prices
  • constant state of flux
  • 15 years of constant evolution
  • their mantra: design anywhere, build anywhere.
  • enterprise change — not just engineering.
  • hmmm: according to his graphics, their whole change process is linear. IMHO, that’s obsolete in era of constant change: must evolve to cyclical. Ponderous process…
  • collect data: anything can be added, if it’s latest

The IoT Can Even Help You Breathe Better: GCE Group’s Zen-O portable oxygen concentrator for people with respiratory problems (not actually launched yet):

  • InVMA has built IoT application using ThingWorx to let patients, docs and service providers carefully monitor data
  • GCE made radical change from their traditional business in gas control devices. Zen-O is in the consumer markets. They were very interested in connected products — especially since their key competitor launched one!
  • Goals: predictive maintenance, improved patient care, asset management, development insight.
  • Design process very collaborative, with many partners.

The Digital Value Chain: GE’s Manufacturing Journey. Robert Ibe, global IT Engineering Leader at GE Industrial Solutions:

  • supports Brilliant Factory program.
  • they design and manufacture electrical distribution equipment, 30 factories worldwide.
  • “wing-to-wing” integrated process
  • had a highly complex, obsolete legacy
  • started in 2014: they were still running really old CAD technology. 14 CAD repositories that didn’t talk to each other. 15 year old PLM software. No confidence in any of data they had.
  • They began change with PLM — that’s where the digital thread begins.  PLM is foundation for their transformation.
  • PLM misunderstood: use it to map out cohesive, cross-functional, model-based strategy. Highlight relevance of “design anywhere — manufacture anywhere.” Make PLM master of your domain. Make it critical to commercial & manufacturing. Advertise benefits & value.
  • Whole strategy based on CAD. Windchill heart of the process.
  • Rate of implementation faster than business can keep up with!
  • Process: implementation approach:
    • design systems integration
    • model-based design
    • digital thread
    • manufacturing productivity.
  • common enterprise PLM framework
  • within Windchill, can see entire “digital bill of documents.”
  • focused on becoming critical for supply chain.
  • total shift from their paper-based legacy.
  • integrated regulatory compliance with every step of design.

It’s Not Your Grandmother’s IoT: Blockchain and IoT Morph Into An Emerging Technology Powerhouse:

  • Example of claims for fair-traded coffee that I’ve used in past

Finding Business Value in IoT panel:

  • Bayer — been in IoT (injection devices for medicine) for 7 years.  Reduced a lot of parts inventory.
  • Remote control of vending machines replaces paper & pencil
  • Your team needs to evangelize for biz benefits of IoT
  • New Opportunities:
    • vision and language
    • interacting with physical world
    • problem solving.
  • Didn’t know!  Skype can do real-time translation.
  • Google Deep Mind team worked internally, cut energy costs at its server farms. 15% energy reduction.
  • Digital progress makes economic pie bigger, BUT  most people aren’t benefitting economicallly. Some may be worse off. “Great decoupling” — mushrooming economic gap. One reason is that tech affects different groups differently.
  • “Entirely possible to create inclusive prosperity” through tech!



Delivering Smart City Solutions and an Open Citywide Platform to Accelerate Economic Growth and Promote New Solution Innovation, Scott McCarley, PTC:

  • $40 trillion potential benefits from smart cities
  • 1st example & starting point for many cities, is smart lightpoles. Major savings plus value added. Real benefit is building on that, with systems of systems (water, traffic, energy, etc.) — the systems don’t operate in isolation.
  • Future buildings may have built-in batteries to add to power supply. Water reclamation, etc.
  • Cities are focused on KPIs across all target markets.
  • Cornerstone systems for a city: power & grid, water/wastewater, building management, city services & infrastructure.
  • Leveraging ThingWorx to address these needs:
    • deploy out-of-box IoT solutions from a ThingWorx Solution Provider: All examples, include Aquamatix, DEPsys (grid), Sensus, All Traffic, Smoove (bike sharing).
    • leverage ThingWorx to rapidly develop new IoT solutions.
      connect to any device, rapidly develop applications, visually model systems, quickly develop new apps. Augmented reality will play a role!
    • create role-based dashboards:
      one for your own operations, another for city.
    • bring the platform to create a citywide platform.
      Sum of connected physical assets, communication networks, and smart city solutions.

Digital Supply Networks: The Smart Factory. Steven Shepley, Deloitte:

  • 3 types of systems: 1) foundational visualization solutions:  KPIs, etc. 2) advanced analytical solutions 3) cyber-physical solutions.
  • Priority smart factory solutions:
    • advanced planning (risk-adjusted MRP), dynamic sequencing, cross network.
    • value chain integration: signal-based customer/supplies integration, dynamic distribution routing/tracking, digital twin.
    • asset efficiency: predictive maintenance, real-time asset tracking intelligence, energy management
    • labor productivity: robotic and cognitive automation, augmented reality-driven efficiency, real-time safety monitoring
    • exponential tech: 3-D printing, drones, flexible robots.
  • How to be successful: think big, start small, scale fast
  • Act differently: multi-disciplinary teams,
  • sensors getting simpler, easier to connect & retrofit. National Connectors particularly good.

Global Smart Home, Smart Enterprise, and Smart Cities IoT Use Cases. Ken Herron, Unified InBox, Pte.

  • new focus on customer
  • H2M: human to machine communication is THE key to IoT success. Respect their interests.
  • Austin TX: “robot whisperer” — industrial robot company. Their robots aging out, getting out of tune, etc. Predictive analytics anticipates problems.
  • Stuttgart: connected cow — if one cow is getting sick, may spread to entire herd. Intervene.
  • Kuala Lumpur: building bot — things such as paper towel dispensers communicating with management.
  • London: Concierge chatbot — shopper browsing can chat with assistant on combining outfits.
  • Dubai: smart camera. Help find your car in mega-shopping center: read license plates, message the camera, it gives you map to the car.
  • Singapore: Shout — for natural disasters. Walks the person making the alert through process, confirms choices.
  • Stuttgart: Feinstaubalarm — occasional very bad airborne dust at certain times. Tells people with lung problems options, such as taking mass transit.
  • Singapore: Smart appliances — I always thought smart fridge was stupid, but in-fridge camera that lets you shoot a “shelfie” does make sense
  • Fulda Germany: smart clothing for military & police: full record of personal health at the moment. Neat!
  • Noida India — smart sneakers can automatically post your run results (see connection to my SmartAging concept)

Business Impact of IoT, Eric Schaeffer, Accenture:

  • Michelin delivery trucks totally reinvented, major fuel savings, other benefits.
  • manufacturing being deconstructed
  • smart, connected products are causing it
  • industrial companies must begin transformation today

Thingworx: Platform for Management Revolution. W. David Stephenson, Stephenson Strategies:

Here are key points from my presentation about how the IoT can allow radical transformation from linear & hierarchical companies to IoT-centric “circular companies” (my entire presentation can be found here):

  • The IoT can be the platform for dramatic management change that was impossible in the past.
  • Making this change requires an extraordinary shift in management thinking: from hierarchy to collaboration.
  • The results will be worth the effort: not only more efficiency & precision, but also new creativity, revenue streams, & customer loyalty. 
  • In short, it will allow total transformation!

Kickstarting America’s Digital Transformation. Aneesh Chopra & Nicholas Thompson!

  • on day one, Our President (not the buffoon) told Chopra he wanted default to be switch from closed to open government & data.
  • National Wireless Initiative: became law 1 yr. after it was introduced.  Nationwide interoperable, secure wireless system.
  • Obama wanted to harness power of Internet to grow the economy. Talked to CIO of P & G, who was focused on opening up the company to get ideas from outside.
  • Thompson big on open data, but he thinks a lot more now is closed, we’re going wrong way.
  • Interesting example of getting down cost of solar to $1 per installed watt!!
  • Thompson: growing feeling that technology isn’t serving us economically. Chopra: need to democratize the benefits.
  • Chopra talking about opening up Labor Dept. data to lead to creative job opportunities for underserved.





Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisense, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

Updating my “SmartAging” device design criteria

Could seniors be the ideal test group for user-friendly consumer IoT devices?

Two years ago I created a series of criteria by which to evaluate IoT devices that seniors might use (N.B., I didn’t really focus on ones specifically designed for seniors, because I have an admitted bias against devices with huge buttons or that look like mid-century period tube radios — it’s been my experience that seniors aren’t crying out to be labeled as “different.”) to improve their quality of life.

The particular emphasis was on what I called “SmartAging,” which synthesizes two aspects of the IoT:

  • Quantified Self health devices to keep seniors healthier longer and to become partners with their doctors rather than passive recipients of care, and
  • smart home devices to make it easier to run their homes, so that seniors could remain on their own as long as possible rather than entering some drab, sterile assisted-living facility (again, my bias showing…).

A lot has happened since I compiled the list. The changes have solidified my conviction that seniors, especially the less technologically minded, might be the acid test of consumer IoT user friendliness because they can’t be expected to work as hard at mastering devices, they don’t have the automatic openness of digital natives, and encounter differing degrees of reduced agility, etc. 

Also, given the current political climate, it makes sense to try to improve seniors’ lives as much as possible without requiring costly public services that are in jeopardy (I am trying to be civil here, OK?).

The most dramatic of these developments is the amazing success of Amazon’s voice-activated Echo.  I’ve praised it before as an ideal device for seniors, partially because voice is such a natural input for anyone, and particularly because it means that the tech-averse don’t have to learn about interfaces or programs, just speak! Even better, as the variety of “skills” increases, the Echo really is becoming a unified SmartAging hub: I can now control my Sensi smart thermostats and the “Ask My Buddy” skill can even call for assistance, so it works for both halves of SmartAging.  Although I haven’t tested it, I assume much of this also holds true for the Google Home.

There’s an increasing variety of other new Quantified Self devices, some of which are specifically focused on seniors, such as the GreatCall Jitterbug Smart phone, which comes with a simplified, over-size home page featuring “brain games” a la Lumosity, and an Urgent Response system (all of these features are available on an iPhone and, I assume, on Android, but must be set in Settings rather than being the default settings).

In addition, on the personal level, I convinced my Apple Store (disclaimer: I’m at the bottom of the food chain with Apple, not privy to any policies or devices under consideration, so this is just my opinion) to let me start bi-weekly classes at the local senior center on how to use Apple devices, especially the iPad. I continue to work with a lot of seniors who come into the store who are often leery of tech products.

Silver Medal!

Most directly, last month’s companywide Apple Wellness Challenge was life-changing for me.  This year the friendly competition focused on the Apple Watch (important, since a watch is a familiar form-factor to geezers). After wasting three days trying to find the app, I really got into the event because we could share results with friends to encourage (or shame, LOL) them — that really motivated me.  Bottom line: I managed to win a Silver Medal, Apple featured my experience on the event website, and, most important, I made lasting changes to my fitness regimen that I’ve sustained since then, now exercising almost an entire hour a day. I couldn’t help think afterward that the program really did show that user-friendly technology can improve seniors’ lives.

Sooo, with a few more years to think about them and more progress in devices themselves, (as well as increased sensitivity to issues such as privacy and security) here are my amended criteria for evaluating products and services for seniors. As I mentioned the first time, Erich Jacobs of OnKöl assisted with the specs):

Ease of Use

  1. Does it give you a choice of ways to interact, such as voice, text or email? Voice in particular is good for seniors who don’t want to learn about technology, just use it.
  2. Is it easy for you to program, or — if you them give your permission — does it allow someone else to do it remotely?
  3. Does it have either a large display and controls or the option to configure them through settings?
  4. Is it intuitive?
  5. Does it require hard-wired, professional installation?
  6. Is it flexible: can it be adjusted? Is it single purpose, or does it allow other devices to plug in and create synergies? Can it be a true hub for all your IoT devices?
  7. Does it complicate your life, or simplify it?
  8. Do any components require regular charging, or battery replacement?

Privacy, Security, and Control

  1. Is storage local vs. cloud or company’s servers? Is data encrypted? Anonymized?
  2. Do you feel creepy using it?
  3. Is it password-protected?
  4. Is security “baked in” or an afterthought?
  5. Can you control how, when, and where information is shared?
  6. If it is designed to allow remote monitoring by family or caregivers, can you control access by them?
  7. Will it work when the power goes out?


  1. Are there monthly fees? If so, low or high? Long term contract required?
  2. Is there major upfront cost? If so, is that offset by its versatility and/or the contrast to getting the same services from a company?
  3. Does full functioning require accessories?


  1. Is it stylish, or does the design” shout” that it’s for seniors? Is it “Medical” looking?
  2. Is the operation or design babyish?
  3. Would younger people use it?
  4. Is it sturdy?
  5. Does it have “loveability” (i.e., connect with the user emotionally)? (This term was coined by David Rose in Enchanted Objects, and refers to products that are adorable or otherwise bond with the user.)


  1. Inbound
    1. Does it support multiple protocols (eg. Bluetooth, BluetoothLE, WiFi, etc)
    2. Is the architecture open or closed?
  2. Outbound
    1. Does it support multiple protocols (eg. WiFi, Ethernet, CDMA, GSM, etc)
    2. Data path (cloud, direct, etc)
  3. Remote configuration capability (i.e., by adult child)? If so, can the user control amount of outside access?

Features and Functions

  1. Reminders
    1. Passive, acknowledge only
    2. Active dispensing (of meds)
  2. Home Monitoring
    1. Motion/Passive Activity Monitoring
    2. Environmental Alarms (Smoke, CO, Water, Temp)
    3. Intrusion Alarms (Window etc)
    4. Facilities/Infrastructure (Thermostat)
  3. Health Monitoring
    1. Vitals Collection
    2. Wearables Activity Monitoring
    3. Behavioral/Status Polling (How are you feeling today?)
    4. Behavioral Self-improvement
  4. Communications Monitoring
    1. Landline/Caller ID
      1. Identify scammers
    2. eMail and computer use
      1. Identify scammers
    3. Mobile phone use
  5. Fixed Personal Emergency Response System (PERS)
  6. Mobile Personal Emergency Response System (PERS)
  7. Fixed Fall Detection/Prediction
  8. Mobile Fall Detection/Prediction
  9. Telehealth (Video)
  10. New and Innovative Features

If you’re thinking about developing an IoT product and/or service for seniors I hope you’ll consider the SmartAging concept, and that these criteria will be helpful. If you’re looking for consulting services on design and/or implementation, get in touch!

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”


Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management