Updating my “SmartAging” device design criteria

Could seniors be the ideal test group for user-friendly consumer IoT devices?

Two years ago I created a series of criteria by which to evaluate IoT devices that seniors might use (N.B., I didn’t really focus on ones specifically designed for seniors, because I have an admitted bias against devices with huge buttons or that look like mid-century period tube radios — it’s been my experience that seniors aren’t crying out to be labeled as “different.”) to improve their quality of life.

The particular emphasis was on what I called “SmartAging,” which synthesizes two aspects of the IoT:

  • Quantified Self health devices to keep seniors healthier longer and to become partners with their doctors rather than passive recipients of care, and
  • smart home devices to make it easier to run their homes, so that seniors could remain on their own as long as possible rather than entering some drab, sterile assisted-living facility (again, my bias showing…).

A lot has happened since I compiled the list. The changes have solidified my conviction that seniors, especially the less technologically minded, might be the acid test of consumer IoT user friendliness because they can’t be expected to work as hard at mastering devices, they don’t have the automatic openness of digital natives, and encounter differing degrees of reduced agility, etc. 

Also, given the current political climate, it makes sense to try to improve seniors’ lives as much as possible without requiring costly public services that are in jeopardy (I am trying to be civil here, OK?).

The most dramatic of these developments is the amazing success of Amazon’s voice-activated Echo.  I’ve praised it before as an ideal device for seniors, partially because voice is such a natural input for anyone, and particularly because it means that the tech-averse don’t have to learn about interfaces or programs, just speak! Even better, as the variety of “skills” increases, the Echo really is becoming a unified SmartAging hub: I can now control my Sensi smart thermostats and the “Ask My Buddy” skill can even call for assistance, so it works for both halves of SmartAging.  Although I haven’t tested it, I assume much of this also holds true for the Google Home.

There’s an increasing variety of other new Quantified Self devices, some of which are specifically focused on seniors, such as the GreatCall Jitterbug Smart phone, which comes with a simplified, over-size home page featuring “brain games” a la Lumosity, and an Urgent Response system (all of these features are available on an iPhone and, I assume, on Android, but must be set in Settings rather than being the default settings).

In addition, on the personal level, I convinced my Apple Store (disclaimer: I’m at the bottom of the food chain with Apple, not privy to any policies or devices under consideration, so this is just my opinion) to let me start bi-weekly classes at the local senior center on how to use Apple devices, especially the iPad. I continue to work with a lot of seniors who come into the store who are often leery of tech products.

Silver Medal!

Most directly, last month’s companywide Apple Wellness Challenge was life-changing for me.  This year the friendly competition focused on the Apple Watch (important, since a watch is a familiar form-factor to geezers). After wasting three days trying to find the app, I really got into the event because we could share results with friends to encourage (or shame, LOL) them — that really motivated me.  Bottom line: I managed to win a Silver Medal, Apple featured my experience on the event website, and, most important, I made lasting changes to my fitness regimen that I’ve sustained since then, now exercising almost an entire hour a day. I couldn’t help think afterward that the program really did show that user-friendly technology can improve seniors’ lives.

Sooo, with a few more years to think about them and more progress in devices themselves, (as well as increased sensitivity to issues such as privacy and security) here are my amended criteria for evaluating products and services for seniors. As I mentioned the first time, Erich Jacobs of OnKöl assisted with the specs):

Ease of Use

  1. Does it give you a choice of ways to interact, such as voice, text or email? Voice in particular is good for seniors who don’t want to learn about technology, just use it.
  2. Is it easy for you to program, or — if you them give your permission — does it allow someone else to do it remotely?
  3. Does it have either a large display and controls or the option to configure them through settings?
  4. Is it intuitive?
  5. Does it require hard-wired, professional installation?
  6. Is it flexible: can it be adjusted? Is it single purpose, or does it allow other devices to plug in and create synergies? Can it be a true hub for all your IoT devices?
  7. Does it complicate your life, or simplify it?
  8. Do any components require regular charging, or battery replacement?

Privacy, Security, and Control

  1. Is storage local vs. cloud or company’s servers? Is data encrypted? Anonymized?
  2. Do you feel creepy using it?
  3. Is it password-protected?
  4. Is security “baked in” or an afterthought?
  5. Can you control how, when, and where information is shared?
  6. If it is designed to allow remote monitoring by family or caregivers, can you control access by them?
  7. Will it work when the power goes out?

Affordability

  1. Are there monthly fees? If so, low or high? Long term contract required?
  2. Is there major upfront cost? If so, is that offset by its versatility and/or the contrast to getting the same services from a company?
  3. Does full functioning require accessories?

Design/UX

  1. Is it stylish, or does the design” shout” that it’s for seniors? Is it “Medical” looking?
  2. Is the operation or design babyish?
  3. Would younger people use it?
  4. Is it sturdy?
  5. Does it have “loveability” (i.e., connect with the user emotionally)? (This term was coined by David Rose in Enchanted Objects, and refers to products that are adorable or otherwise bond with the user.)

Architecture

  1. Inbound
    1. Does it support multiple protocols (eg. Bluetooth, BluetoothLE, WiFi, etc)
    2. Is the architecture open or closed?
  2. Outbound
    1. Does it support multiple protocols (eg. WiFi, Ethernet, CDMA, GSM, etc)
    2. Data path (cloud, direct, etc)
  3. Remote configuration capability (i.e., by adult child)? If so, can the user control amount of outside access?

Features and Functions

  1. Reminders
    1. Passive, acknowledge only
    2. Active dispensing (of meds)
  2. Home Monitoring
    1. Motion/Passive Activity Monitoring
    2. Environmental Alarms (Smoke, CO, Water, Temp)
    3. Intrusion Alarms (Window etc)
    4. Facilities/Infrastructure (Thermostat)
  3. Health Monitoring
    1. Vitals Collection
    2. Wearables Activity Monitoring
    3. Behavioral/Status Polling (How are you feeling today?)
    4. Behavioral Self-improvement
  4. Communications Monitoring
    1. Landline/Caller ID
      1. Identify scammers
    2. eMail and computer use
      1. Identify scammers
    3. Mobile phone use
  5. Fixed Personal Emergency Response System (PERS)
  6. Mobile Personal Emergency Response System (PERS)
  7. Fixed Fall Detection/Prediction
  8. Mobile Fall Detection/Prediction
  9. Telehealth (Video)
  10. New and Innovative Features

If you’re thinking about developing an IoT product and/or service for seniors I hope you’ll consider the SmartAging concept, and that these criteria will be helpful. If you’re looking for consulting services on design and/or implementation, get in touch!

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”

Yikes!

Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.

 

IoT Intangibles: Increased Customer Loyalty

There are so many direct, quantifiable benefits of the IoT, such as increased quality (that 99.9988% quality rate at Siemens’s Amberg plant!) and precision, that we may forget there are also potential intangible benefits.

Most important of those is customer loyalty, brought about by dramatic shifts both in product designs and how they are marketed.

Much of this results from the IoT lifting the veil of Collective Blindness to which I’ve referred before: in particular, our prior inability to document how products were actually used once they left the loading dock. As I’ve speculated, that probably meant that manufacturers got deceptive information about how customers actually used products and their degree of satisfaction. The difficulty of getting feedback logically meant that those who most liked and most hated a product were over-represented: those who kinda liked it weren’t sufficiently motivated to take the extra steps to be heard.

Now, by contrast, product designers, marketers, and maintenance staffs can share (that critical verb from my Circular Company vision!) real-time data about how a product is actually operating in the field, often from a “digital twin” they can access right at their desks.

Why’s that important?

It can give them easy insights (especially if those different departments do access and discuss the data at the same time, each offering its own unique perspectives, on issues that will build customer loyalty:

  • what new features can we add that will keep them happy?
  • can we offer upgrades such as new operating software (such as the Tesla software that was automatically installed in every single car and avoided a recall) that will provide better customer experiences and keep the product fresh?
  • what possible maintenance problems can we spot in their earliest stages, so we can put “predictive maintenance” services into play at minimal cost and bother to the customer?

I got interested in this issue of product design and customer loyalty while consulting for IBM in the 9o’s, when it introduced the IBM PS 2E (for Energy & Environmental), a CES best-of-show winner in part because of its snap-together modular design. While today’s thin-profile-at-all-costs PC and laptop designs have made user-friendly upgrades a distant memory, one of the things that appealed to me about this design was the realization that if you could keep users satisfied that they were on top of  new developments by incremental substitution of new modules, they’d be more loyal and less likely to explore other providers.

In the same vein, as GE has found, the rapid feedback can dramatically speed upgrades and new features. That’s important for loyalty: if you maintain a continuing interaction with the customer and anticipate their demands for new features, they’ll have less reason to go on the open market and evaluate all of your competitors’ products when they do want to move up.

 

Equally important for customer loyalty is the new marketing options that the continuous flow of real-time operating data offer you. For a growing number of companies, that means they’re no longer selling products, but leasing them, with the price based on actual customer usage: if it ain’t bein’ used, it ain’t costing them anything and it ain’t bringing you any revenue!

Examples include:

  • jet turbines which, because of the real-time data flow, can be marketed on the basis of thrust generated: if it’s sitting on the ground, the leasee doesn’t pay.  The same real-time data flow allows the manufacturer to schedule predictive maintenance at the earliest sign of a problem, reducing both its cost and the impact on the customer.
  • Siemens’s Mobility Services, which add in features such as 3-D manufactured spare parts that speed maintenance and reduced costs, keeping the trains running.
  • Philips’s lighting services, which are billed on the basis of use, not sold.
  • SAP’s prototype smart vending machine, which (if you opt in) may offer you a special discount based on your past purchasing habits.

At its most extreme is Caterpillar’s Reman process, where the company takes back and remanufactures old products, giving them a new life — and creating new revenues — when competitors’ products are in the landfill.

Loyalty can also be a benefit of IoT strategies for manufacturers’ own operations as well. Remember that the technological obstacles to instant sharing of real-time data have been eliminted for the supply chain as well. If you choose to share it, your resupply programs can also be automatically triggered on a M2M basis, giving an inherent advantage to the domestic supplier who can get the needed part there in a few hours, versua the low-cost supplier abroad who may take weeks to reach your loading dock.

It may be harder to quantify than quality improvements or streamlined production through the IoT, but that doesn’t mean that dependable revenue streams from loyal customers aren’t an important potential benefit as well.

Blockchain might be answer to IoT security woes

Could blockchain be the answer to IoT security woes?

I hope so, because I’d like to get away from my recent fixation on IoT security breaches and their consequences,  especially the Mirai botnet attack that brought a large of the Internet to its knees this Fall and the even scarier (because it involved Philips, a company that takes security seriously) white-hat hackers attack on Hue bulbs.  As I’ve written, unless IoT security is improved, the public and corporations will lose faith in it and the IoT will never develop to its full potential.

Now, there’s growing discussion that blockchain (which makes bitcoin possible), might offer a good IoT security platform.

Ironically — for something dealing with security — blockchain’s value in IoT may be because the data is shared and no one person owns it or can alter it unilaterally (BTW, this is one more example of my IoT “Essential Truth” that with the IoT data should be shared, rather than hoarded as in the past.

If you’re not familiar with blockchain, here’s an IBM video, using an example from the highly security-conscious diamond industry, that gives a nice summary of how it works and why:

The key aspects of blockchain is that it:

  • is transparent
  • can trace all aspects of actions or transactions (critical for complex sequences of actions in an IoT process)
  • is distributed: there’s a shared form of record keeping, that everyone in the process can access.
  • requires permission — everyone has permission for every step
  • is secure: no one person — even a system administrator — can alter it without group approval.

Of these, perhaps the most important aspect for IoT security is that no one person can change the blockchain unilaterally, adding something (think malware) without the action being permanently recorded and without every participant’s permission.  To add a new transaction to the blockchain, all the members must validate it by applying an algorithm to confirm its validity.

The blockchain can also increase efficiency by reducing the need for intermediaries, and it’s a much better way to handle the massive flood of data that will be generated by the IoT.

The Chain of Things think tank and consortium is taking the lead on exploring blockchain’s application to the IoT. The group describes itself as “technologists at the nexus of IoT hardware manufacturing and alternative blockchain applications.” They’ve run several blockchain hackathons, and are working on open standards for IoT blockchains.

Contrast blockchain with the current prevailing IoT security paradigm.  As Datafloq points out, it’s based on the old client-server approach, which really doesn’t work with the IoT’s complexity and variety of connections: “Connection between devices will have to exclusively go through the internet, even if they happen to be a few feet apart.”  It doesn’t make sense to try to funnel the massive amounts of data that will result from widespread deployment of billions of IoT devices and sensor through a centralized model when a decentralized, peer-to-peer alternative would be more economical and efficient.

Datafloq concludes:

“Blockchain technology is the missing link to settle scalability, privacy, and reliability concerns in the Internet of Things. Blockchain technologies could perhaps be the silver bullet needed by the IoT industry. Blockchain technology can be used in tracking billions of connected devices, enable the processing of transactions and coordination between devices; allow for significant savings to IoT industry manufacturers. This decentralized approach would eliminate single points of failure, creating a more resilient ecosystem for devices to run on. The cryptographic algorithms used by blockchains, would make consumer data more private.”

I love it: paradoxically, sharing data makes it more secure!  Until something better comes along and/or the nature of IoT strategy challenges changes, it seems to me this should be the basis for secure IoT data transmission!

 

 

 

Siemens’s Mobility Services: Trains Become IoT Labs on Wheels

George Stephenson's Killingworth locomotive Source: Project Gutenberg

George Stephenson’s Killingworth locomotive
Source: Project Gutenberg

As those of you who know rail history understand, with Stephenson as your last name, you’re bound to have a strong interest in railroads! Add in the fact that I was associate producer of an award-winning documentary on the subject back in the early 70’s, and it’s no wonder I was hooked when I got a chance to meet with some of Siemens’s top rail executives on my trip to Barcelona last week (Disclaimer: Siemens paid my expenses, but didn’t dictate what I covered, nor did they have editorial review of this piece).

What really excites me about railroads and the IoT is that they neatly encapsulate the dramatic transformation from the traditional industrial economy to the IoT: on one hand, the railroad was perhaps THE most critical invention making possible 19th century industry, and yet it still exists, in recognizable but radically-evolved form, in 2016. As you’ll see below, trains have essentially become laboratories on wheels!

I dwelt on the example of the Union Pacific in my e-book introduction to the IoT, SmartStuff, because to CIO Lynden Tennison was an early adopter, with his efforts focused largely on reducing the number of costly and dangerous derailments, through measures such as putting infrared sensors every twenty miles along the rail bed to spot “hotboxes,” overheating bearings. That allowed an early version of what we now know as predictive maintenance, pulling cars off at the next convenient yard so the bearings could be replaced before a serious problem. Even though the technology even five years ago was primitive compared to today, the UP cut bearing-related derailments by 75%.

Fast-forward to 2016, and Siemens’s application of the IoT to trains through its Mobility Services is yielding amazing benefits: increasing reliability, cutting costs, and even leading to possible new business models. They’ve taken over maintenance for more than 50 rail and transit programs.

While I love IoT startups with a radical new vision and no history to encumber them, Siemens is a beacon to those companies firmly rooted in manufacturing which may wonder whether to incorporate the IoT in their services and strategy. I suspect that its software products are inherently more valuable than competitors from pure-play software firms at commercial launch because the company eats its own dogfood and applies the new technology first to the products it manufactures and maintains — closing the loop.

Several of its executives emphasized that one of the advantages Siemens feels they enjoy is that their software engineers in Munich work in a corner of an old locomotive factory that Siemens still operates, so they can interact with those actually building and maintaining the engines on a daily basis. When it comes to security issues, their experience as a manufacturer means they understand the role of each component of the signaling system. Dr. Sebastian Schoning, ceo of Siemens client Gehring Technologies, which manufactures precision honing tools, told me that it was easier to sell these digital services to its own client base because so much of their current products include Siemens devices, giving them confidence in the new offerings. GE enjoys the same advantages of combining manufacturing and digital services with its Evolution Series locomotives.

The key to Siemens’s Mobility Services is Sinalytics, its platform architecture for data analysis not just for rail, but also for industries ranging from medical equipment to wind farms. More than 300,000 devices currently feed real-time data to the platform,   Consistent with my IoT-centric “Circular Company” vision, Sinalytics capitalizes on the data for multiple uses, including connectivity, data integration, analytics, and the all-important cyber security — they call the result not Big Data, but Smart Data. As with data services from jet turbine manufacturers such as Rolls Royce and GE, the platform also allows merging the data with data from sources such as weather forecasts which, in combination, can let clients optimize operating efficiency on a real-time M2M basis.  

With the new approach, trains become IoT laboratories on wheels, combining all of the key elements of an IoT system:

  • Sensing: there are sensors on the engines and gearboxes, plus vibration sensors on  microphones measure noises from bearings in commuter trains. They can even measure how engine oil is aging, so it can be changed when really needed, rather than on an arbitrary schedule.
  • Algorithms to make sense of the data and act on it. They read out patterns, record deviations & compare them with train control systems or vehicles of the same type.
  • Predictive maintenance replaces scheduled maintenance, dramatically reducing down-time and catastrophic failure.For example: “There’s a warning in one of the windows (of the control center display): engine temperature unusual. ‘We need to analyze the situation in greater depth to know what to do next  — we call it  ‘root cause analysis,” (say) Vice-President for Customer Support Herbert Padinger. ‘We look at its history and draw on comparative data from the fleet as a whole.’ Clicking on the message opens a chart showing changes in temperature during the past three months. The increased heat is gradually traced to a signal assembly. The Siemens experts talk with the customer to establish how urgent the need for action is, and then takes the most appropriate steps.”  He says that temperature and vibration analyses from the critical gearboxes gives Siemens at least three days advance notice of a breakdown — plenty of time for maintenance or replacement.  Predictive maintenance is now the norm for 70-80% of Siemens’s repairs.
  • Security (especially important given all of the miles of track and large crowds on station platforms): it includes video-based train-dispatch and platform surveillance using its SITRAIL D system, as well as cameras in the trains. The protections have to run the gamut from physical attacks to cyber attacks.  For security, the data is shared by digital radio, not networks also shared by consumers.

When operations are digitized, it allows seamlessly integrating emerging digital technologies into the services. Siemens Digital Services also included augmented reality (so repair personnel can see manuals on heads-up displays), social collaboration platforms, and — perhaps most important — 3-D printing-based additive manufacturing, so that replacement parts can be delivered with unprecedented speed. 3-D printing also allows dramatic reduction in parts inventories and allows replacement of obsolete parts that may no longer be available through conventional parts depots or even — get this — to improve on the original part’s function and/or durability, based on practical experience gained from observing the parts in use.  Siemens has used 3-D printing for the past last 3 years, and it lets them assure that they will have replacements for the locomotive’s entire lifespan, which can exceed 30 years.

The results of the new approach are dramatic.

  • None of the Velaro trains that Siemens maintains for several operators have broken down since Sinalytics was implemented. Among those in Spain only 1 has left more than 15 min. behind time in 2,300 trips: .0004%!
  • Reliability for London’s West Coast Mainline is 99.7%

  • Perhaps most impressive, because of the extreme cold conditions it must endure, the reliability rate for the Velaro service in Russia is 99.9%!

Their ultimate goal is a little higher: what Siemens calls (pardon the pun) 100% Railability (TM).

And, consistent with what other companies find when they fully implement not only IoT technology, but also what I like to call “IoT Thinking,” when it does reach those previously inconceivable quality benchmarks, the company predicts that, as the software and sensors evolve, the next stage will be new business models in which billing will be determined by guaranteeing customers availability and performance.

PS: I’ll be posting more about my interviews with Siemens officials and the Gartner event in coming days.

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.

Live Blogging Gartner ITxpo Barcelona!

After a harrowing trip via Air France (#neveragain) I’m in lovely Barcelona, live-blogging Gartner ITxpo courtesy of Siemens — but they aren’t dictating my editorial judgment.

Keynoter is Peter Sondergaard, Sr. VP, Gartner Research:

  • start with high-scale traditional IT structures, but with new emphasis on cloud, etc. IT system now partially inside your org. and part outside.  We are half-way through transition to cloud: half of sales support now through cloud. More financial, HR & other functions. General trend toward cloud, but still some internal processes as necessary. Must clean up traditional inside processes.
    • “Ecosystems are the next evolution of Digital”
    • Must learn to measure your investments in customer experience.
    • Starting to explore VR & AR (personal shout out to PTC & clients such as Caterpillar!!)
    • must understand customer’s intent through advanced algorithms.  Create solutions to problems they don’t even know they have!
  • next domain of new platform: Things:
    • build strategies with two lenses: consumer preferences, AND the enterprise IoT lens.
    • leverage exponential growth in connected things
    • 27445 exabytes of data by 2020!
    • can’t just bolt on new systems on old ones: must rework existing systems to include devices — processes, workflow, much harder (i.e., my circular company paradigm).
  • intelligence: how your systems learn and decide independently
    • algorithms– algorithmic intelligence — drives decisions
    • now, AI, driven by machine learning. Machines learn from experience.
    • information is new code base
    • we will employ people to train things to learn from experience through neural networks
  • ecosystems
    • linear value supply chains transformed to ecosystems through electronic interchange.
    • others can build experiences, etc. that you haven’t thought out through APIs  — my “share data” Essential Truth. APIs implement business policies in the digital world.c
  • customers
    • customer driven

Where to start?

  • 70% of IoT implementation is through new organization within companies!

Now other Gartner analysts chime in:

  • insurance: engage your customers.
  • smart gov: must interact with those who implement. Must re-imaging public involvement sense/engage/interact
  • case study: Deakin University in Australia: digital platforms to enhance student experience.
  • case study: Trenitalia mass transit system switching to predictive maintenance! Huge cost savings. “Experience hands & beginners mind at work” — love that slogan!!!! “Listen to the train instead of scheduling maintenance”
  • blockchain: ecosystem, brilliant in simplicity. All can see transaction but no one can invade privacy. Use to solve many problems: data provenance, land registry, public infrastucture, AI.
  • Woo: use this to TRANSFORM THE WORLD!!!
  • ratz — I was preoccupied at time, they talked about a new mobility system for seniors — re my SmartAging paradigm!!
  • paradigm shift — partnering with competitors (much of what I wrote about in DataDynamite: share data, don’t hoard it!)  Think about Apple & Google driving car companies’ interfaces. “Do you join hands with digital giants or join hands with them?”).
  • ooh, love the digital assistant correcting his presentation. I can only dream of a future where there are millions added to grammar police!

 

 

Smart Disposables: Could This Be Birth of Internet of Everything?

Could EVERYTHING be “smart?” It may be happening sooner we thought, and with implications that are hard to fathom today.

That’s the potential with new technology pioneered by Shyam Gollakota, an assistant professor at the University of Washington.  For the first time, it would let battery- and cordless-less devices harvest signals from Wi-Fi, radio, or TV to communicate and power themselves.

Astounding!

For a long time, the most “out there” idea about IoT sensors has been Prof. Kris Pister’s “smart dust” concept, which aimed at a complete sensor/communication system in a package only one cubic millimeter in size. Pister argued that such devices would be so small and cheap that they could be installed — or perhaps even scattered — almost everywhere. The benefits could be varied and inconceivable in the past. According to Pister, possible applications could include:

  • “Defense-related sensor networks
    • battlefield surveillance, treaty monitoring, transportation monitoring, scud hunting, …
  • Virtual keyboard
    • Glue a dust mote on each of your fingernails.  Accelerometers will sense the orientation and motion of each of your fingertips, and talk to the computer in your watch.  QWERTY is the first step to proving the concept, but you can imagine much more useful and creative ways to interface to your computer if it knows where your fingers are: sculpt 3D shapes in virtual clay, play  the piano, gesture in sign language and have to computer translate, …
    • Combined with a MEMS augmented-reality heads-up display, your entire computer I/O would be invisible to the people around you.  Couple that with wireless access and you need never be bored in a meeting again!  Surf the web while the boss rambles on and on.
  • Inventory Control
    • The carton talks to the box, the box talks to the palette, the palette talks to the truck, and the truck talks to the warehouse, and the truck and the warehouse talk to the internet.  Know where your products are and what shape they’re in any time, anywhere.  Sort of like FedEx tracking on steroids for all products in your production stream from raw materials to delivered goods.
  • Product quality monitoring
    • temperature, humidity monitoring of meat, produce, dairy products
      • Mom, don’t buy those Frosted Sugar Bombs, they sat in 80% humidity for two days, they won’t be crunchy!
    • impact, vibration, temp monitoring of consumer electronics
      • failure analysis and diagnostic information, e.g. monitoring vibration of bearings for frequency signatures indicating imminent failure (back up that hard drive now!)
  • Smart office spaces
    • The Center for the Built Environment has fabulous plans for the office of the future in which environmental conditions are tailored to the desires of every individual.  Maybe soon we’ll all be wearing temperature, humidity, and environmental comfort sensors sewn into our clothes, continuously talking to our workspaces which will deliver conditions tailored to our needs.  No more fighting with your office mates over the thermostat.
  • Interfaces for the Disabled (courtesy of Bryndis Tobin)
    • Bryndis sent me email with the following idea: put motes “on a quadriplegic’s face, to monitor blinking & facial twitches – and send them as commands to a wheelchair/computer/other device.”  This could be generalized to a whole family of interfaces for the disabled.  Thanks Bryndis!”

Now imagine that a critical component of such a tiny, ubiquitous device was removed. Because it didn’t need a battery it could be even smaller and cheaper (because of cheaper and simpler radio hardware circuitry).

The goal is having billions of disposable devices start communicating,” Gollakota said (my emphasis).

You may remember that I’ve written before about my metaphor of a pre-IoT era of “Collective Blindness,” the universal inability to peer (literally or figuratively) inside things in the past, which forced us to create all sorts of work-arounds to cope with that lack of real-time data. Imagine how precise our knowledge about just about everything will be if Gollakota’s technology becomes commonplace.

.As Technology Review reported, the critical challenge is making it possible for a device lacking a traditional power source to communicate: “Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.”

The principle making the innovation possible is “backscattering,” reflecting waves, particles or signals back in the direction they came from, which creates a new signal.

The early results are encouraging. Gollakata has made a contact lens that can connect with a smartphone. Think I’ll pass on that one, but other devices he and his team have created include brain implants and “a flexible skin patch that can sense temperature and respiration, a design that could be used to monitor hospital patients.”  Marketers will love this one: a concert poster broadcasting a bit of the featured band’s music over FM radio!

Jeeva Wireless, Gollakata’s commercial spinoff, is using a variety of the technology, “passive Wi-Fi.” Devices using it can data up to 100 feet and connect through walls.

Tiny passive devices using backscatter could be manufactured for as little as a dollar. “In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.”

Gollakata sums up the potential impact: “We can get communication for free” (my emphasis).

That’s incredible, but in light of the continuing series of major DDoS attacks made possible by weak or non-existent IoT security measures, I must remind everyone that speed, power, and ubiquity aren’t everything: we also need IoT security, so I hope the low cost and ability to function without a dedicated energy source won’t obscure that need as well.


 

BTW: a MIT profile on Gollakata mentions one of his other, related, inventions, which I think would mesh beautifully with my SmartAging vision to help seniors age in place in better health.

It’s called  WiSee, which uses wireless signals such as Wi-Fi to “enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources (e.g., a Wi-Fi router and a few mobile devices in the living room).”

I love the concept for seniors, because (like Echo, which I’m finally getting!!) it doesn’t require technical expertise, which many seniors lack and/or find intimidating, to launch and direct automated devices. In this case, the activation is through sensing and recognition of human gestures. According to Gollakata,“’Gestures enable a whole new set of interaction techniques for always-available computing embedded in the environment. As an example, he suggests that a hand swiping motion in the air could enable a user to control the radio volume while showering – or change the song playing on the stereo in the living room while you are cooking in the kitchen.”

He goes on to explain:

“…. that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. ‘We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users.”

Combine that with speaking to Alexa, and even the most frail seniors could probably control most of the functions in a smart home. Gollakota says that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. “We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users, “he says.

Incredible work, professor!

Circular Company: Will Internet of Things Spark Management Revolution?

Could the IoT’s most profound impact be on management and corporate organization, not just cool devices?

I’ve written before about my still-being-refined vision of the IoT — because it (for the first time!) allows everyone who needs instant access to real-time data to do their jobs and make better decisions to share that data instantly —  as the impetus for a management revolution.

My thoughts were provoked by Heppelmann & Porter’s observation that:

“For companies grappling with the transition (to the IoT), organizational issues are now center stage — and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.”

If I’m right, the IoT could let us switch from the linear and hierarchical forms that made sense in an era of serious limits to intelligence about things and how they were working at thaFor companies grappling with the transition, organizational issues are now center stage—and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.t moment, to circular forms that instead eliminate information “silos” and instead give are circular, with IoT data as the hub. 

This article expands on that vision. I’ve tried mightily to get management journals to publish it. Several of the most prestigious have given it a serious look but ultimately passed on it. That may be because it’s crazy, but I believe it is feasible today, and can lead to higher profits, lower operating costs, empowering our entire workforces, and, oh yeah, saving the planet.

Audacious, but, IMHO, valid.  Please feel free to share this, to comment on it, and, if you think it has merit, build on it.

Thanks,

W. David Stephenson


The IoT Allows a Radical, Profitable Transformation to Circular Company Structure

 

by

W. David Stephenson

Precision assembly lines and thermostats you can adjust while away from home are obvious benefits of the Internet of Things (IoT), but it might also trigger a far more sweeping change: swapping outmoded hierarchical and linear organizational forms for new circular ones.

New org charts will be dramatically different because of an important aspect of the IoT overlooked in the understandable fascination with cool devices. The IoT’s most transformational aspect is that, for the first time,

everyone who needs real-time data to do their jobs better or
make better decisions can instantly 
share it.

That changes everything.

Linear and hierarchical organizational structures were coping mechanisms for the severe limits gathering and sharing data in the past. It made sense then for management, on a top-down basis, to determine which departments got which data, and when.

The Internet of Things changes all of that because of huge volumes of real-time data), plus modern communications tools so all who need the data can share it instantly. 

This will allow a radical change in corporate structure and functions from hierarchy: make it cyclical, with real-time IoT data as the hub around which the organization revolves and makes decisions.

Perhaps the closest existing model is W.L. Gore & Associates. The company has always been organized on a “lattice” model, with “no traditional organizational charts, no chains of command, nor predetermined channels of communication.”  Instead, they use cross-disciplinary teams including all functions, communicating directly with each other. Teams self-0rganize and most leaders emerge spontaneously.

As Deloitte’s Cathy Benko and Molly Anderson wrote, “Continuing to invest in the future using yesteryear’s industrial blueprint is futile. The lattice redefines workplace suppositions, providing a framework for organizing and advancing a company’s existing incremental efforts into a comprehensive, strategic response to the changing world of work.”  Add in the circular form’s real-time data hub, and the benefits are even greater, because everyone on these self-organizing teams works from the same data, at the same time.

You can begin to build such a cyclical company with several incremental IoT-based steps.

One of the most promising is making the product design process cyclical. Designers used to work in a vacuum: no one really knew how the products functioned in the field, so it was hard to target upgrades and improvements. Now, GE has found it can radically alter not only the upgrade process, but also the initial design as well:

“G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. ‘We’re getting these offerings done in three, six, nine months,’ (Vice-President of Global Software William Ruh said). ‘It used to take three years.’”

New IoT and data-analytics tools are coming on the market that could facilitate such a shift. GE’s new tool, “Digital Twins,” creates a wire-frame replica of a product in the field (or, for that matter, a human body!) back at the company. Coupled with real-time data on its status, it lets everyone who might need to analyze a product’s real-time status (product designers, maintenance staff, and marketers, for example) to do so simultaneously.

The second step toward a cyclical organization is breaking down information silos.

Since almost every department has some role in creation and sales of every product, doesn’t it make sense to bring them together around a common set of data, to explore how that data could trigger coordinated actions by several departments? 

Collaborative big-data analysis tools such as GE’s Predix, SAP’s HANA, and Tableau facilitate the kind of joint scrutiny and “what-if” discussions of real-time data that can make circular teamwork based on IoT-data sharing really achieve its full potential.

The benefits are even greater when you choose to really think in circular terms, sharing instant access to that real-time data not only companywide, but also with external partners, such as your supply chain and distribution network – and even customers – not just giving them some access later on a linear basis.  For example, SAP has created an IoT-enabled vending machine. If a customer opts in, s/he is greeted by name, and may be offered “your regular combination” based on past purchases, and/or a real-time discount. That alone would be neat from a marketing standpoint, but SAP also opened the resulting data to others, resulting in important logistics improvements. Real-time machine-to-machine (M2M) data about sales at the new vending machines automatically reroute resupply trucks to those machines currently experiencing the highest sales. 

With the IoT, sharing data can make your own product or service more valuable. With the Apple HomeKit, you can say “Siri, it’s time for bed,” and the Hue lights dim, Schlage lock closes, and Ecobee thermostat turns down. By sharing real-time IoT data, each of these companies’ devices become more valuable in combinations than they are by themselves.

Hierarchical and linear management is outmoded in the era of real-time data from smart devices. It is time to begin to replace it with a dynamic, circular model with IoT data as its hub.

Smart Infrastructure Logical Top Priority for IoT

The only issue Clinton and Trump can agree on is the need for massive improvements to the nation’s crumbling infrastructure, especially its roads and bridges. But, please, let’s make it more than concrete and steel.

Let’s make it smart, and let’s make it the top priority for the IoT because of the trickle-down effects it will have on everything else in our economy.

Global economist Jeffrey Sachs stated the case eloquently in a recent Boston Globe op-ed, “Sustainable infrastructure after the Automobile Age,” in which he argued that the infrastructure (including not only highways and bridges but also water systems, waste treatment, and the electric grid) shaped by the automotive age has run its course, and must be replaced by one “in line with new needs, especially climate safety, and new opportunities, especially ubiquitous online information and smart machines.”

I’m currently reading Carlo Ratti and Matthew Claudel’s The City of Tomorrow: Sensors, Networks, and the Future of Urban Life, which makes the same argument: “The answer to urban expansion and diffusion — and the host of social consequences that they bring — may be to optimize, rather than increase, transportation infrastructure.”

The IoT is perfectly suited to the needs of a new information-based infrastructure, especially one which must balance promoting the economy and mobility with drastic reductions in greenhouse gasses (transportation produces approximately a third of the U.S.’s  emissions). It can both improve maintenance (especially for bridges) through built-in sensors that constantly monitor conditions and can give advance warning in time to do less-costly and less-disruptive predictive maintenance, and reduce congestion by providing real-time information on current congestion so that real-time alterations to signals, etc., can be made rather than depending on outmoded fixed-interval stoplights, etc.

Sachs points out that infrastructure spending as a percentage of GDP has fallen since the Reagan years, and that it will require much more spending to bring it up to date.

A good place to look for a model is China.  The country already sports the largest concentration of M2M connections in the world: “74 million connections at the end of 2014, representing almost a third of the global base,” much of that in the form of smart bridges, smart rails, and smart grid, and critical because of the country’s rapid economic growth (Ratti cites a Beijing traffic jam that immobilized cars for an astounding 12 days!). Similarly, the government aims to have 95% of homes equipt with smart meters by next year.The country has used its investment in smart infrastructure to build its overall IoT industry’s ability to compete globally.

Sachs argues for a long-term smart infrastructure initiative:

“I propose that we envision the kind of built environment we want for the next 60 years. With a shared vision of America’s infrastructure goals, actually designing and building the new transport, energy, communications, and water systems will surely require at least a generation, just as the Interstate Highway System did a half-century ago.”

He says we need a plan based on three priorities to cope with our current national and global challenges:

“We should seek an infrastructure that abides by the triple bottom line of sustainable development. That is, the networks of roads, power, water, and communications should support economic prosperity, social fairness, and environmental sustainability. The triple bottom line will in turn push us to adopt three guiding principles.

First, the infrastructure should be “smart,” deploying state-of-the-art information and communications technologies and new nanotechnologies to achieve a high efficiency of resource use.

Second, the infrastructure should be shared and accessible to all, whether as shared vehicles, open-access broadband in public areas, or shared green spaces in cities.

Third, transport infrastructure should promote public health and environmental safety. The new transport systems should not only shift to electrical vehicles and other zero-emission vehicles, but should also promote much more walking, bicycling, and public transport use. Power generation should shift decisively to zero-carbon primary energy sources such as wind, solar, hydro, and nuclear power. The built environment should be resilient to rising ocean levels, higher temperatures, more intense heat waves, and more extreme storms.”

The IoT, particularly because of its ability to let us share real-time data that in turn can regulate the infrastructure, is ideally suited to this challenge. It’s time for Congress to not only spend on infrastructure but to do so wisely.

The result will be not only the infrastructure we need, but also a more robust IoT industry in general.