Amazon Echo: great tech present for your tech-averse parents!

Never let it be said that I get serious about my Christmas shopping until about this date!

This year, my major suggestion is about a product that it took me a full year to buy after my mother-in-law of a certain age sent last Christmas’s check: never let it be said that I rush into purchases of any kind (I should explain that I’m like the Beacon Hill Brahmin lady who explained to a New York counterpart asking where she bought her hat: “We don’t buy hats. We have hats.” Similarly, I try to avoid buying absolutely anything: I just have what I absolutely need. A strange and complex bird, I am …).

The item in question? An Amazon Echo, which, characteristically, I bought refurbished for $50 off!

Amazon Echo

Amazon Echo

That leads me to a last-minute suggestion for an unlikely use of said Echo: introducing your tech-averse parent to the benefits of smart home and Quantified Self technology (AKA my “SmartAging” paradigm to keep seniors healthy and in their own homes instead of an institution).

 As I wrote a year ago, I think the neatest thing about the Echo in that regard (and, to a lesser extent, other voice-controlled IoT devices, although they’re handicapped because they just don’t have Alexa’s quick response time and already huge and constantly growing list of “skills) is that you don’t need to know any technology to use it: you just say “Alexa:….” and she does it!

While I knew the Echo had gone far beyond its original use to stream music, I had no idea until I bought it how robust and rapidly-growing it’s “skills” have become, and that it’s really a full-fledged smart home hub (why buy a dedicated hub that just sits there and doesn’t provide any of the Echo’s other benefits? Got me..).  It’s hard to keep up, but a recent Turbo Future article, “Amazon Echo: 15 Best New Features,” gives a pretty good overview, and it seems to me that most of them involve various services that can make it a lot easier, and definitely more enjoyable, for aging parents to continue to live in and manage their homes (although some judicious Christmas morning set-up by adult children may be in order for those seniors who avoid technology like the plague), because all you have to do is talk and listen! They’ll appreciate Alexa even more if their hands are full, which is often the case in the kitchen.

Here are a few of my favorites:

  • shopping lists: my wife doesn’t share my love of gadgetry, but we both love this simple service.  Say “Alexa, add flour to my shopping list,” and it’s instantly on the Alexa app on your phone, to pull out at the supermarket. As someone who dutifully makes shopping lists and then always forgets them, that’s worth the service alone.  I won’t buy my household staples from Amazon because, despite the savings, I don’t like the ecological impact that specialized service causes, but if that’s not an issue for you, you can order products directly from Amazon using Alexa.
  • ordering services: you can hail an Uber or order a Domino’s Pizza. For a senior who doesn’t have a car, that can be great!
  • music: obviously the prime market for Amazon’s and other streaming music services such as Pandora is millennials, but, guess what, you can even get Guy Lombardo (the soundtrack of my earliest years because of my parents’ 78’s) simply by asking Alexa.  The ultimate time machine!
  • books: if you parent has vision problems, audible books may be a boon, and since Amazon now owns Audible, this is also possible.
  • news: I’ve been trying to wean myself from the news since Something Bad Happened Last Month, but I’m still drawn like a moth to the flame, so I can get NPR instantly. A growing variety of other sources are also available.
  • smart home: I just installed two Sensi thermostats as I get deeper into smart home technology on the home front. Even though they have a great app that lets me adjust the temp when I’m away from home, it’s neat to just say “Alexa, turn down the heat two degrees” and have her do the work, not me! Next up? Adding my WeMo lights.
  • cooking: even though you can now get Echo’s little brothers (Dot and Tap) for use elsewhere in the home — or even outdoors — most Echos are found in the kitchen, and nothing is worse than flour-covered hands on a cookbook.  Now you can even ask Alexa for a great recipe for a certain dish, use it to make your shopping list, and follow the steps for making the dish, all just by asking her. Neato.
  • calendar: they may not be working anymore, but seniors have got a lot of appointments — the doctor, or my wife’s 95-year old aunt’s tango lessons (I kid you not!), so if you link your Google Calendar, Alexa will make sure you’re not late.

Equally important (and I suspect this will become more of a feature in the near future) the Echo can even help you stay on top of the other part of my SmartAging vision: improving your health, because you can access your Fitbit data.  There’s already a skill to help parents with kiddies’ ailments, from our Children’s Hospital, so why not one for geriatrics as well??

That’s just for now, and independent developers are adding new “skills” for Alexa at a dizzying pace.  So, if you still don’t have a present for Grannie? Get her an Echo, and since it’s from Amazon, she’ll still get it by the 25th!

 

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.

Smart Disposables: Could This Be Birth of Internet of Everything?

Could EVERYTHING be “smart?” It may be happening sooner we thought, and with implications that are hard to fathom today.

That’s the potential with new technology pioneered by Shyam Gollakota, an assistant professor at the University of Washington.  For the first time, it would let battery- and cordless-less devices harvest signals from Wi-Fi, radio, or TV to communicate and power themselves.

Astounding!

For a long time, the most “out there” idea about IoT sensors has been Prof. Kris Pister’s “smart dust” concept, which aimed at a complete sensor/communication system in a package only one cubic millimeter in size. Pister argued that such devices would be so small and cheap that they could be installed — or perhaps even scattered — almost everywhere. The benefits could be varied and inconceivable in the past. According to Pister, possible applications could include:

  • “Defense-related sensor networks
    • battlefield surveillance, treaty monitoring, transportation monitoring, scud hunting, …
  • Virtual keyboard
    • Glue a dust mote on each of your fingernails.  Accelerometers will sense the orientation and motion of each of your fingertips, and talk to the computer in your watch.  QWERTY is the first step to proving the concept, but you can imagine much more useful and creative ways to interface to your computer if it knows where your fingers are: sculpt 3D shapes in virtual clay, play  the piano, gesture in sign language and have to computer translate, …
    • Combined with a MEMS augmented-reality heads-up display, your entire computer I/O would be invisible to the people around you.  Couple that with wireless access and you need never be bored in a meeting again!  Surf the web while the boss rambles on and on.
  • Inventory Control
    • The carton talks to the box, the box talks to the palette, the palette talks to the truck, and the truck talks to the warehouse, and the truck and the warehouse talk to the internet.  Know where your products are and what shape they’re in any time, anywhere.  Sort of like FedEx tracking on steroids for all products in your production stream from raw materials to delivered goods.
  • Product quality monitoring
    • temperature, humidity monitoring of meat, produce, dairy products
      • Mom, don’t buy those Frosted Sugar Bombs, they sat in 80% humidity for two days, they won’t be crunchy!
    • impact, vibration, temp monitoring of consumer electronics
      • failure analysis and diagnostic information, e.g. monitoring vibration of bearings for frequency signatures indicating imminent failure (back up that hard drive now!)
  • Smart office spaces
    • The Center for the Built Environment has fabulous plans for the office of the future in which environmental conditions are tailored to the desires of every individual.  Maybe soon we’ll all be wearing temperature, humidity, and environmental comfort sensors sewn into our clothes, continuously talking to our workspaces which will deliver conditions tailored to our needs.  No more fighting with your office mates over the thermostat.
  • Interfaces for the Disabled (courtesy of Bryndis Tobin)
    • Bryndis sent me email with the following idea: put motes “on a quadriplegic’s face, to monitor blinking & facial twitches – and send them as commands to a wheelchair/computer/other device.”  This could be generalized to a whole family of interfaces for the disabled.  Thanks Bryndis!”

Now imagine that a critical component of such a tiny, ubiquitous device was removed. Because it didn’t need a battery it could be even smaller and cheaper (because of cheaper and simpler radio hardware circuitry).

The goal is having billions of disposable devices start communicating,” Gollakota said (my emphasis).

You may remember that I’ve written before about my metaphor of a pre-IoT era of “Collective Blindness,” the universal inability to peer (literally or figuratively) inside things in the past, which forced us to create all sorts of work-arounds to cope with that lack of real-time data. Imagine how precise our knowledge about just about everything will be if Gollakota’s technology becomes commonplace.

.As Technology Review reported, the critical challenge is making it possible for a device lacking a traditional power source to communicate: “Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.”

The principle making the innovation possible is “backscattering,” reflecting waves, particles or signals back in the direction they came from, which creates a new signal.

The early results are encouraging. Gollakata has made a contact lens that can connect with a smartphone. Think I’ll pass on that one, but other devices he and his team have created include brain implants and “a flexible skin patch that can sense temperature and respiration, a design that could be used to monitor hospital patients.”  Marketers will love this one: a concert poster broadcasting a bit of the featured band’s music over FM radio!

Jeeva Wireless, Gollakata’s commercial spinoff, is using a variety of the technology, “passive Wi-Fi.” Devices using it can data up to 100 feet and connect through walls.

Tiny passive devices using backscatter could be manufactured for as little as a dollar. “In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.”

Gollakata sums up the potential impact: “We can get communication for free” (my emphasis).

That’s incredible, but in light of the continuing series of major DDoS attacks made possible by weak or non-existent IoT security measures, I must remind everyone that speed, power, and ubiquity aren’t everything: we also need IoT security, so I hope the low cost and ability to function without a dedicated energy source won’t obscure that need as well.


 

BTW: a MIT profile on Gollakata mentions one of his other, related, inventions, which I think would mesh beautifully with my SmartAging vision to help seniors age in place in better health.

It’s called  WiSee, which uses wireless signals such as Wi-Fi to “enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources (e.g., a Wi-Fi router and a few mobile devices in the living room).”

I love the concept for seniors, because (like Echo, which I’m finally getting!!) it doesn’t require technical expertise, which many seniors lack and/or find intimidating, to launch and direct automated devices. In this case, the activation is through sensing and recognition of human gestures. According to Gollakata,“’Gestures enable a whole new set of interaction techniques for always-available computing embedded in the environment. As an example, he suggests that a hand swiping motion in the air could enable a user to control the radio volume while showering – or change the song playing on the stereo in the living room while you are cooking in the kitchen.”

He goes on to explain:

“…. that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. ‘We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users.”

Combine that with speaking to Alexa, and even the most frail seniors could probably control most of the functions in a smart home. Gollakota says that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. “We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users, “he says.

Incredible work, professor!

SmartAging Manifesto (draft): improve quality of aging & cut costs through IoT

What do you think constitutes “SmartAging?”

It’s been a while since I’ve posted anything about my IoT-based “SmartAging” concept, which combines:

  • Quantified Self health monitoring devices to make it easier to monitor your health conditions around the clock and help your caregivers better understand your health, and — hopefully — to motivate you to more activity and better eating.
  • smart home devices that make it easier to manage your home as you age and thereby avoid institutionalization.

However, I have been giving the concept a lot of thought, and have created a draft of a manifesto on the concept to guide my own work and hopefully provoke some discussion.  Here it is!

SmartAging Manifesto (draft)

  • Aging is a natural, lifelong process, so why fear and avoiding talking about it, especially how to make it more enjoyable and less costly?
  • We seniors aren’t all the same, so don’t treat us as if we were. Look beyond our wrinkles, and you’ll see some of us still work, some have just retired, and still others are long retired. When it comes to technology, some us us are afraid of it, some of us embrace it, and there are many others in the middle. Respect us for who we really are — and our choices.
  • We don’t want to have to work to master technology: we worked for 40 or 50 years, and now we want to enjoy ourselves. If you want to sell us technology, make it easy to learn and use. Maybe even fun…  Mark Weiser, credited as the IoT’s intellectual father, wrote that“The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” That sounds pretty good to us!
  • We want to shift gears and have more fun. That doesn’t mean shutting off our brains, but it does mean that we now have time to explore new hobbies, play games, spend time with our families (especially grandchildren), and travel. We’re particularly interested in technology that can help us do these things.
  • We’re also more concerned about our health. We want to be as healthy as possible, as long as possible, and we’re worried about debilitating illnesses and becoming dependent on others. We’ll be very interested in new devices to help us stay healthier longer — especially if it isn’t obvious we’re using them and they don’t make us look weird and pitiful.
  • We’re also concerned about independence (most of us do live independently, incidentally) and staying in our own homes instead of being carted off to some smelly, dehumanizing institution. We’re interested in technology that can make it easier to run our homes and stay in them.
  • We’re got something that kids don’t: wisdom and perspective, gathered from long lives and tough experience. Don’t just look at us as buyers of your stuff: ask us for our ideas. You may be surprised what you’ll learn.

That’s what I’ve got so far, but I wanted to circulate the draft ASAP, to gather others’ thoughts as well (I’ll credit you if you contribute any ideas!). e-mail me your ideas.

Alexa and Aging: more on voice as THE interface for “SmartAging”

 Amazon Alexa & services it can trigger!

Amazon Echo & services it can trigger!

I predict every elderly person will soon have a personal home assistant, ready to respond to their every command.

However, that home health aide may not be human, but sit on the kitchen counter, and look suspiciously like Amazon’s breakthough IoT device, The Echo.

The late Mark Weiser, “the father of the Internet of Things,” famously predicted that “the best computer is a quiet, invisible servant,” and that’s certainly the potential with Echo, or the just announced Google Assistant (how sexy is that name? I like the fact it’s so impersonal. Let’s you fire one voice “assistant” and hire another without becoming personally attached, LOL), or the much-rumored Apple version, which might also include a camera (disclaimer: while I work part-time at an Apple Store, I ain’t privy to any inside dope, no way, no how).

That’s particularly the case when it comes to seniors, and my SmartAging vision of an IoT-based future for them combining Quantified Self health monitoring devices that can motivate seniors to improve their fitness levels, and smart home devices that can make it easier to manage their homes as they age, to avoid costly and soul-deadening institutionalization (or, even better, combining the two, as with one of my favorite IFTTT “recipes,”  programming your Jawbone to wake you gently at the best time in your sleep cycle, AND gradually turn on your Hue lights. How better for a senior — or anyone — to start their day on a positive note (OK, I know what you’re thinking: better turn on the coffee maker automatically!).

      KidsMD for Amazon Alexa

What really got me thinking about the advantages of a voice-activated future for seniors was a recent story about a similar app for the other end of the age spectrum, developed by our Children’s Hospital, for Alexa: KidsMD. What better for a harried mom or dad, with his or her hands full, AND a sick child to boot, than to simply ask for advice on temperature, fever and the like? That got me thinking that the same would apply to seniors as well, needing advice with some of the unwanted aspects of aging (I could mention here an example from a senior I care for, but that would be most unpleasant…). As I’ve said before, this would be helpful under any circumstances, but when the person needing help is a frail, tech-averse senior, it would be superb if s/he only had to speak a simple command or request to get needed help, or advice on something such as the proper amount of an over-the-counter drug to take.

There are tons of other life-improving reasons for such an approach for seniors, including:

Of course, and I can’t emphasize this enough, especially since seniors are already victims of so many scamming tricks, because these counter-top devices are always on, listening to you,  and because much of their possible use could be for reporting confidential health or financial data, privacy and security MUST be THE top priority in designing any kind of voice-activated app or device for seniors. Think of them as the canaries in the coal mine in this regard: protecting vulnerable seniors’ privacy and security should be the acid test of all voice-activated apps and devices for people of all ages.

Having said all that, as I noted in a piece last week about what a stunning combination of services Amazon has put together to become the dominant player in the retail IoT sector, one of those offerings is the $100 million Alexa fund to fuel advances in the voice-activated arena.  I’m ready to put their money where my mouth is  (LOL) in this regard, to design voice-activated devices and services for seniors.  If you’d like to partner, E-mail me!!

Zoe: perhaps even better than Echo as IoT killer device?

Zoe smart home hub

I’ve raved before about Echo, Amazon’s increasingly versatile smart home hub, primarily because it is voice activated, and thus can be used by anyone, regardless of tech smarts — or whether their hands are full of stuff.  As I’ve mentioned, voice control makes it a natural for my “SmartAging” concept to help improve seniors’ health and allow them to manage their homes, because you don’t have to understand the underlying technology — just talk.

Now there’s a challenger on the horizon: start-up Zoe, which offers many of Echo’s uses, but with an important difference that’s increasingly relevant as IoT security and privacy challenges mount: your data will remain securely in your home. Or, as their slogan goes:

“So far, smart home meant high convenience, no privacy, or privacy, but no fun. We are empowering you to have both.”

You can still get in on Zoe’s Indegogo campaign with a $249 contribution, which will get you a hub and an extra “voice drop” to use in another room, or the base level, $169 for a single room. Looks kinda cool to me, especially with the easily changed “Art Covers” and backlight coloring (the Che Guevera one looks appropriate for a revolutionary product) …  The product will ship in late 2016.

Don’t get me wrong: I love Echo & will be getting mine soon, but there is that creepy factor given government officials’ fascination with the potential of tapping into smart home data as part of their surveillance. Remember what US Director of Intelligence James Clapper said, ““In the future, intelligence services might use the [internet of things] for identification, surveillance, monitoring, location tracking, and targeting for recruitment, or to gain access to networks or user credentials.” Consider then, that Echo sits there on your kitchen counter, potentially hacked and then hoovering up all of your kitchen chit-chat to relay directly to the spooks.  Wouldn’t you rather that data remained totally under your control?

In addition to storing the data on site rather than in the cloud, Zoe also touts that it has advanced voice-recognition so it can learn IFTTT-style “recipes,” or be operated by apps. She comes with 1,500 built-in voice commands, or, if you stump her, (and only if you choose to, preserving that in-house-only option) web-based Advanced Voice Recognition steps in, with a cloud-based voice recognition system. Her recognition capabilities will grow over time.. Zoe will work with WiFi, Bluetooth, Z-Wave, and other standards.

The company will ship the developers’ kit in six months. It will be open source.

Not being cloud based will mean it loses to Echo on two important counts. For many people, the ability to order things from Amazon simply by speaking may be more important than security concerns,. Also, I notice it doesn’t mention any speakers, so it may be lacking the ability to also serve as a music source (obviously it wouldn’t work with Amazon Music or Apple Music if it isn’t cloud-connected, but it would at least be nice to be able to use it to play your own collection — advantage to Echo on that one.

At least this means there’s competition in the field (and, BTW, I’d love to see Apple swoop in and make THE voice-activated device!)


BTW: Thanks to good buddy Bob Weisberg for the tip about Zoe! Follow him!

 

Digital Twins: the Ultimate in Internet of Things Real-Time Monitoring

Get ready for the age when every product will have a “digital twin” back at the manufacturer, a perfect copy of not just the product as it left the factory floor, but as it is functioning in the field right now. That will be yet another IoT game-changer in terms of my 4th IoT Essential Truth, “rethink products.”

Oh, and did I forget to mention that we’ll each have a personal body twin from birth, to improve our health?

For the first time we’ll really understand products, how they work, what’s needed to improve them, and even how they may be tweaked once they’re thousands of miles from the factory, to add new features, fix problems, and/or optimize efficiency.

Key to circular organizations

Even better, the twin can play a critical role in accomplishing my vision of new circular organizations (replacing obsolete hierarchies and linear processes), in which all relevant departments and functions (and even supply chain members, distribution networks and customers, where relevant) form a continuous circle with real-time IoT data as the hub).  Think of the twin as one of those manifestations of the real-time data to which all departments will have simultaneous access.

GE Digital Twin visualization

               GE Digital Twin visualization

I’ve often remarked how incredible it was that companies (especially manufacturers) were able to function as well as they did and produce products as functional as they were despite the inability to peek inside them and really understand their operations and/or problems. Bravo, industrial pioneers!

However, that’s no longer good enough, and that’s where digital twins come in.  In a WSJ blog post this week, General Electric’s William Ruh, my fav IoT visionary/pragmatist, talked about how the company, as part of its “Industrial Internet” transformation, is making digital twins a key tool:

“Every product out there will have one, and there will be an ability to connect a system, or systems of digital twins, easily. The digital twin is a model of an asset, a product such as a jet engine or a model of the blades in a jet engine. Sensors on those blades pull the data off and feed them into the digital twin. The digital twin is kept current with the data that is run off the sensors. It is in sync with the reality of the blade. Now we can ask what is the best time to change the blade, how the blade performs, options to get greater efficiency.”

Proof of the pudding?

Ruh says they’ve created a wind turbine and twin they call the “Digital Windfarm,” which generates 20% more electricity than a nearby conventional turbine.

PTC is also working on digital twins. According to the company’s Executive VP for Digital Twin, Mike Campbell,:  “It’s a model that uniquely represents a physical occurrence in the real world. This one-­to­one mapping is important. You create a relationship between the digital data and a unique product occurrence from a variety of sources: sensors, enterprise data on how it was made, what its configuration was, its geometry, how it is being used, and how it is being serviced.”

Predix

The key to digital twins is GE’s “Predix” predictive analytics software platform, which the company is extending across its entire product line. As always, the key is a constant stream of real-time data:

“weather, component messages, service reports, performance of similar models in GE’s fleets—a predictive model is built and the data collected is turned into actionable insights. This model can perform advanced planning, such as forecasting a ‘plan of the day’ for turbine operation, determining a highly efficient strategy to execute planned maintenance activities, and providing warnings about upcoming unplanned maintenance events, all of which ultimately generates more output and revenue for the customer.”

Digital doppelgängers

Here’s where the really sci-fi part kicks in: Ruh also predicts (Predix??, LOL) that GE’s medical division will soon create digital twins for you and me — at birth!

“I believe we will have a digital twin at birth, and it will take data off of the sensors everybody is running, and that digital twin will predict things for us about disease and cancer and other things. I believe we will end up with health care being the ultimate digital twin. Without it, I believe we will have data but with no outcome, or value.”

And, frankly, there’s also a spooky aspect to what GE’s doing, working with retailers to create psychographic models of customers based on their buying preferences. I’m dubious on that account: I do appreciate some suggestion about what might interest me, especially books, based on my past purchases. On the other hand, a couple of weeks I shopped for — but didn’t buy — biz cards online. Now, I get AdSense ads for these cards everywhere — even on this homepage (sorry for stuff that isn’t IoT, dear reader) Get over it, OK? Count me out when it get’s down to really granular psychographic profiles — too many risks with privacy and security.

I suspect digital twins will become a staple of the IoT, yielding critical real-time info on product status that will enable predictive maintenance and, as Ruh has written elsewhere, speeding the product upgrade process because, for the first time, designers will know exactly how the products are functioning in the field, as opposed to the total lack of information that used to be the norm. Stay tuned.

3 Steps to Make Your City a World Leader in the IoT

I don’t know about you, but, in the face of grim news globally, I’m determined to make this an incredible year of change and growth.

Happy New Year!

I took a longer than normal time off, to pick up our youngest in Hong Kong after a semester abroad in Thailand, then vacation in Bali.

Hong Kong Internet of Things Association

I started the trip with a speech to the Hong Kong Internet of Things Association, in which I laid out my vision of radical change in corporate management and organization made possible by the IoT, away from the increasingly-obsolete hierarchical and linear forms that made perfect sense in an early 20th-century setting when data was hard to gather and share, but doesn’t when the IoT can allow instant sharing of real-time data by all who need it.

But the most interesting issue came up in the following q & a, when someone asked whether Hong Kong could become a global leader in the IoT.

I told them yes, and followed up with an op-ed in today’s South China Morning Post laying out the steps.

I believe the same steps can help your city become an IoT leader, and that this is a case of the-more-the-merrier: the more cities become IoT leaders the quicker widespread innovation and IoT adoption will become, and the more liveable and efficient our cities — the necessary focus of global growth in this century, especially to meet the challenge of global warming — will become.  So here goes!

  1. Create an IoT community.The one in Boston that I founded is now three years old, and numbers almost 2,000 members. My reason for doing it was that I’d run into many people working in the IoT here (Boston is listed as having the 4th largest concentration of IoT headquarters) but they were largely working in isolation, without a forum to bring them together.

    Forming an IoT network is a crucial step, because the IoT is inherently collaborative: as I’ve written many times before, “network effects” make each individual IoT device or service more valuable if they can be combined with others (for example, Apple’s HomeKit now allows someone to simply say “Siri, it’s time for bed,” and that voice command can trigger collaborative action by a variety of devices from different manufacturers, such as turning down the thermostat, locking the front door, and turning off the lights, which makes each of these IoT devices more valuable than they would be in isolation). Equally important, face-to-face contact may spark ideas that even the most talented IoT practitioner wouldn’t have thought of, huddled alone in his or her garret (or kewl cow0rking space…).

    An association that brings together all of your IoT practitioners will create synergistic benefits for all of them.

  2. Embrace the “smart city” vision. 

    This has the biggest potential payoff for your city, whether or not it becomes a big IoT commercial hub.Traditionally, cities have been laggards in technology adoption, but that’s no longer the case, starting in 2008, when I had the extreme privilege of being a consultant to DC CTO Vivek Kundra (who later became the first US CIO, specifically because of his achievements in DC) when he launched the DC Open Data initiative and the Apps [remember, this was 2008: what the heck are these “apps”???] for America contest to design apps to capitalize on this real-time data.  Hundreds of cities worldwide have embraced the concept, and because it stresses that the solutions be open source, cities that are late to the game can quickly benefit by adopting and adapting creative solutions that others have pioneered.

    When the IoT came along, many of these cities and their entrepreneurial residents were quick to realize their real-time data could lead to IoT apps and services that would deal with many of the prime concerns of cities: traffic control, mass transit, electricity, public health, environmental quality, and water and sewage (Credit where credit is due: IBM’s pioneering Smarter Planet service started working with many of the early adopters even before the smart city movement had a name).

    Cities that have launched comprehensive smart city programs, especially Barcelona’s, which includes projects ranging from free wi-fi to health monitoring for seniors to an app to find parking spaces, have realized tangible benefits while cutting operating costs and that will be the case for newcomers as well.

    Sometimes these initiatives tap the collaborative nature of the IoT to produce a public benefit that would be hideously expensive if they were carried out by municipal workers. For example, in Boston the “Street Bump” smartphone app uses the phone’s sensors to detect if the user’s car hits a pothole, then instantly reports the exact location to the city’s Department of Public Works (DPW). In essence, every driver becomes a de facto DPW employee!

  3. Finally,  join in the worldwide “Things Network” movement.As I’ve written before, this will create citywide, free networks for IoT data exchange, in essence turning an entire city into an IoT laboratory for experimentation and mutual benefit.

    This campaign, which was crowdsourced by only 10 technology enthusiasts in Amsterdam last August, successfully created a citywide data network there in less than a month, using 10 $1200 (USD) “LoRaWan gateways.”  LoRanWan is particularly suited to the IoT because it demands little power, has long range (up to 11 km) and low bandwidth. It wouldn’t require passwords, mobile subscription and zero setup costs.

    There are already 27 cities pursuing Things Networks, and the parent organization is making the concept even easier to deploy through a successful Kickstarter campaign last Fall to raise money to build a new LoRaWan gateway that would only cost $200.

    Unlike the full involvement of city government in initiatives such as opening city data bases, a Things Network is best done by volunteers, so that it will not be co-opted by official government agencies or powerful commercial interests: it is most powerful if it’s open to absolutely anyone who wants to try out a smart Internet of Things idea, while also potentially saving the city the cost of administering an expensive program that could instead be run by volunteers at little cost.

So there you have it: 3 practical steps to make your city a world leader in the Internet of Things that will improve urban life and make the city more efficient even if you don’t make the top 10.  Let’s get cracking!

Live Blogging from the IoT Global Summit

Keynotes:
Came in on end of presentation by Rep. Suzan DelBene, D-WA, co-chair of the House IoT Caucus and an IT industry vet. Her litany of federal inaction in the face of rapidly-evolving 2015_IoT_Summittech — especially regarding privacy protections, where  the key law was enacted in 1986 — was really dispiriting, although it’s good to know there are some members of Congress who are aware of the issue and working on it.

EU Ambassador to the US, David O’Sullivan: the IoT is a “quantum leap” because of combining digital and physical world, and will have huge implications.  Europe has created single digital market. Major investments in IoT & funding research on it.  Very open research projects.  Key is breaking down barriers within the economy. They’re doing research on every aspect of IoT. Priority must be overcoming vertical silos, such as cars and health care. Must balance regulation and innovation. Security and privacy: working on a new set of protections.

Dean Brenner, SVP for Gov. Affairs, Qualcomm: everything will need some form of connectivity. Will need new connectivity paradigm. 4G LTE gives solid foundation for cellular IoT growth.  5G will be fully-deployed by 2020.

Dr. Rakesh Kushwaha, Mformation (hmmm?) Business Leader, Alcatel-Lucent: securing IoT devices. Tech & standards that are already in place to secure mobile devices can be model for I0T devices: they worked with whole range of devices. Fundamental principle of the security: securely update through device/firmware update package.   Only about 40% of IoT will be cellular-based.  Alcatel securing vehicle-mounted devices using FW/SW updates. They will launch a project called IoT Connect.

Session 2: Security for the IoT

Dean Garfield, president & CEO, Information Technology Industry Council: think of security as a design feature, not afterthought. Have to think of it in global sense (including between vertical silos). Chinese government security demands are actually counterproductive. Security can be a differentiating feature.

Joseph Lorenzo-Hall, chief technologist, Center for Democracy and Technology: “IoT Spectrum of Insanity” — such as #IoT door locks, require protections be built in. Security by design. He thinks privacy is a bigger factor than security.

Stephen Pattison, vp of Public Affairs, ARM. Hacker only has to get it right once. You have to get it right every time!  Sensors will have to be very cheap ($5 or less), which will require real creativity.  Security will drive acceptability of IoT. Security breaches will be a major risk for IoT companies.

Chris Boyer, asst. vp, Global Public Policy, AT&T: different security concerns in each vertical domain. Functional classification determines the risk (for example, some affect interruption on critical infrastructure, or life risk). Virtualize security around the end device. Industry activities: application layers, service layer, network layer, access technologies. Looking 4 acceptable risk management levels.

Rory Gray, global head of sales, Intercede: “need world of trusted digital identities.” “Identity is the new currency.”

Government procurement standards may drive privacy and security by design.

Adam Thierer: are we overestimating how much people really care about IoT security (vs. the “cool” factor??).

Afternoon Privacy Panel:

Gary Shapiro, president & CEO, CSA: he disagrees that you should HAVE to give permission to have your info shared: cites all the benefits of sharing data. Thinks we went overboard with HIPPA & privacy. Announcing agreement on guiding principles for sharing health info from #QS devices. A sense that products will be unwelcomed if they create privacy or security issues: example of an Intel engineer who has vision problems. On a personal basis, his mother had terrible time with Alzheimer’s: he’s upset he won’t have access to a Google face recognition technology.

Rob Atkinson, president, Information Technology and Innovation Foundation: “privacy fundamentalists” argue really heavy regulation is way to protect privacy.  BUT, no empirical studies underlying that. Pew survey showed few people believe their landline or credit card data will be private, YET almost everyone uses credit cards or phones: i.e., no correlation between people’s belief in privacy of various technologies and their actual use of the technology.  Overly stringent privacy regulations will reduce their availability. Much of real value of IoT data is from secondary use of the data, which would be undermined by tough regulation. Way too early to put regulatory regime into place for IoT: too early.

Maneesha Mithal, assoc. director, Division of Privacy & Identity Protection, Bureau of Consumer Protection, FTC: two fairly controversial aspects of their 2013 workshop: minimizing data collection debate — said you shouldn’t collect all sorts of data forever, BUT, perhaps collect less sensitive data if they could still derive value. Second issue was “notice and choice.” Tried a middle ground: room for notice and choice,  Discussion of regulation: middle ground on regulation: shouldn’t have specific IoT regulation, but should have general, baseline privacy and security protections. We don’t bring “gotcha cases.”  Could have program that would provide incentives for self-regulation.

Gilad Rosner, Founder, Internet of Things Privacy Forum:  “notice & choice” has been the default privacy & security approach for Internet, but it “fundamentally places the burden of privacy protection on the individual.” A presidential group said the responsibility should rest with the provider, not the user.  Hallmark of a civil society is being regulated.

Day Two:

smart health panel:

You can access my “Smart Aging” presentation on Slide Share.

Peter Ohnemus of dacadoo, a Swiss company, gave an overview of IoT and healthcare and talked briefly about his company’s Health Score, a 0-1000 score assigned to participating individuals based on their real-time scores on factors including movement, nutrition, sleep and stress.

Chantal Worzala of the American Hospital Association gave an overview of issues such as information interoperability and new wellness incentives.

Robert Jarrin, senior director of gov. affairs for Qualcomm, talked about some of the policy issues. FDA now has dedicated staff for electronic devices, and they are now not requiring regulatory compliance for some basic devices.

Smart Home panel:

Hmm. Little actual focus on smart homes in this one…

Cees Links, ceo, Green Peak Technologies: they are a chip manufacturer, “wireless plumbers.” Shipped 1M Zigbee chips. “IoT is not about things, it’s about services.” “Smart Home should be called a butler.” Confusion about IoT standards: thinks ZigBee & Bluetooth will survive, proprietary standards won’t.

Ilkka Lakaniemi, chair, European Commission’s Future Internet Public-Private Partnership Program: working on smart cities strategies, esp. ones that are scalable. Working with NIST on common standards for the demo grants in US & EU. 61 cities involved.

Tobin Richardson, president & ceo, ZigBee Alliance. ZigBee, wi-fi & Bluetooth will form basis of a stable ecosystem. Dollar chip is the goal, getting there quickly.

Paul Feenstra, sr. vp of government & external affairs, The Intelligent Transport Society of America: evolution over last 5 years from car focus to a really varied multi-modal transportation industry. Shocking how we accept the high death rate & congestion on highways. 80% of crashes could be avoided by connected cars.

Business Models for the IoT:

Ana Sancho, Libellium: they manufacture sensor networks for the IoT. Solve problems from smart cities to agriculture & water resources. More than 90 different sensors. They just see very early testing the water with IoT on part of their clients: not widescale implementation.