et. al.: Grandmother Stephenson’s To-Die-For Ginger Cookies

Posted on 22nd December 2014 in et. al.

Ok, enough of the doom and gloom!

Unfortunately the Nobel Peace Prize can’t be awarded posthumously, or I’d nominate either my grandmother Stephenson or my great-grandmother Meyer (the authorship is a little sketchy..) for her Ginger Cookie recipe.  I’m pretty certain that if Obama, Putin, Kim Jong-un and anyone else you want to name sat down around a plate of these tasty morsels, they’d see the light and we could work it all out.

Incidentally, I’ve checked with eminent nutritionists, who told me something startling and counter-intuitive about the recipe. It turns out that if consumed with a smile and a loving heart, the saturated Crisco and refined sugar are actually calorie-free and even good for your soul and heart! Strange but true.

There’s also a secret ingredient that I’m going to try out for the first time this year when three adorable grand-children arrive on Tuesday: making them with tiny, tiny hands and spilling lotsa flour on the floor (maybe even throwing small amounts at each other!).

Here goes:

Grandmother Stephenson’s Ginger Cookies

1 cup of Crisco
1 cup of sugar
1 cup of dark molasses (need I say it? Grandma’s brand recommended!)
4 tsp. of baking soda
2 tsp. of ginger
2 tsp. of cinnamon
1/2 tsp. of ground cloves
1/4 tsp. of nutmeg
1 tsp. of salt
6 cups of flour (I’d suggest Powdermilk if you can get it, because of its beneficial effects on shy persons…)
1 cup of sour milk (add 1 Tbsp. of white vinegar to the milk)

Cream Crisco and sugar. Add molasses. Sift 2 cups of flour and the other dry ingredients. Add the dry ingredients alternating with the sour milk. Sift and add rest of flour — and enough extra flour, if needed, to make a soft dough. Chill overnight. Roll cookies and bake 5-8 minutes at 375-400.

PS: It’s still unclear to me whether this is best done totally by hand or if you can use a Kitchenaid.  I suspect that the extra love added by hands-on approach is preferable (WARNING: avoid any tears falling in dough).

Blessings!

 

comments: Comments Off on et. al.: Grandmother Stephenson’s To-Die-For Ginger Cookies

IoT Security After “The Interview”

Posted on 22nd December 2014 in defense, Internet of Things, M2M, management, privacy, security, US government

Call me an alarmist, but in the wake of the “Interview” catastrophe (that’s how I see it in terms of both the First Amendment AND asymmetrical cyberwarfare), I see this as a clarion call to the #IoT industry to redouble efforts to make both security AND privacy Job #1.

Here’s the deal: if we want to enhance more and more parts of governmental, commercial, and private lives by clever IoT devices and apps to control them, then there’s an undeniable quid pro quo: we MUST make these devices and apps as secure as possible.

I remember some bright young entrepreneurs speaking at a recent wearables conference, where they apologized for not having put attention on privacy and security yet, saying they’d get to it early next year.

Nope.

Unacceptable.

Security must be built in from the beginning, and constantly upgraded as new threats emerge.  I used to be a corporate crisis manager, and one of the things that was so hard to convince left-brained, extremely rational engineers about was that just because fears were irrational didn’t mean they weren’t real — even the perception of insecure IoT devices and apps has the potential to kill the whole industry, or, as Vanity Fair‘s apocalyptic “Look Out, He’s Got a Phone” article documented, it could literally kill us. As in deader than a doornail.

This incident should have convinced us all that there are some truly evil people out there fixated on bringing us to our collective knees, and they have the tech savvy to do it, using tools such as Shodan. ‘Nuff said?

PS: Here’s what Mr. Cybersecurity, Bruce Schneier, has to say on the subject. Read carefully.

comments: Comments Off on IoT Security After “The Interview” tags: , , , ,

Lifting the Veil After the Sale: another IoT “Essential Truth”

Count me among those who believe the Internet of Things will affect every aspect of corporate operations, from manufacturing to customer relations.

Perhaps one of the most dramatic impacts will be on the range of activities that take place after the sale, including maintenance, product liability, product upgrades and customer relations.

In the past, this has been a prime example of the “Collective Blindness” that afflicted us before the IoT, because we basically had no idea what happened with our products once they left the factory floor.

In fact, what little data we did have probably served to distort our impressions of how products were actually used. Because there was no direct way to find out how the products were actually used, negative data was probably given exaggerated weight: we heard negative comments (warrantee claims, returns, liability lawsuits, etc.), loud and clear, but there was no way to find out how the majority of customers who were pleased with their products used them.

That has all changed with the IoT.

Now, we have to think about products  in totally new ways to capitalize on the IoT, and I think this merits another “Essential Truth” about the IoT:

Everything is cyclical.

Think about products — and industrial processes in general — in the old industrial system. Everything was linear: perhaps best exemplified by Henry Ford’s massive River Rouge Complex, the world’s largest integrated factory, and the epitome of integrated production.

Ford River Rouge Complex

“Ford was attempting to control and coordinate all of the necessary resources to produce complete automobiles.  Although Ford’s vision was never completely realized, no one else has come so close, especially on such a large scale.  His vision was certainly a success, one indication of this is the term Fordism, which refers to his style of mass-production, characterized by vertical integration, standardized products and assembly-line production”

At “The Rouge,” raw materials (literally: it had its own coke ovens and foundry!)  flowed in one side, and completed cars flowed out the other, bound for who knows where. Once the cars were in customers’ hands, the company’s contact was limited to whatever knowledge could be gleaned from owners’ visits to dealers’ service departments, irate calls from customers who had problems, and (in later days) safety recalls and/or multi-million dollar class-action lawsuits.

That linear thinking led to a terrible example of the “Collective Blindness” phenomenon that I’ve written about in the past: who knew how customers actually thought about their Model T’s? How did they actually drive them? Were there consistent patterns of performance issues that might not have resulted in major problems, but did irritate customers?

Sure, you could guess, or try to make inferences based on limited data, but no one really knew.

Fast forward to the newest auto manufacturer, Tesla, and its factory in Fremont, California (aside: this massive building — Tesla only uses a portion, used to be the NUMMI factory, where Chevy built Novas and Toyota built Corollas. Loved the perceptual irony: exactly the same American workers built mechanically identical cars [only the sheet metal varied] but the Toyotas commanded much higher prices, because of the perception of “Japanese quality.” LOL. But I digress….).

Tesla doesn’t lose track of its customers once the cars leave the plant.

Tesla assembly line

In fact, as I’ve written before, these “iPhones on wheels” are part of a massive cyclical process, where the cars’ on-board communications constantly send back data to the company about how the cars are actually doing on the road. And, when need be, as I mentioned in that prior post, the company was able to solve a potentially dangerous problem by simply sending out a software patch that was implemented while owners slept, without requiring customer trips to a repair shop!

I imagine that the company’s design engineers also pour over this data to discern patterns that might indicate elements of the physical design to tweak as well.

Of course, what would a blog post by me about IoT paradigm shifts be without a gratuitous reference to General Electric and its Durathon battery plant (aside to GE accounting: where should I send my W-9 and invoice so you can send me massive check for all the free PR I’ve given you? LOL)?

I can’t think of a better example of this switch to cyclical thinking:

  • including sensors into the batteries at the beginning of the production process rather than slapping them on at the end means that the company is actually able to monitor, and fine tune, the manufacturing process to optimize the critical chemical reaction. The same data allows the workers to remove defective batteries from the assembly line, so that every battery that ships works.
  • once in the field (and, remember: these batteries are deployed in incredibly remote areas where it might take days for a repair crew to reach and either service or repair them) the same sensors send back data on how the batteries are functioning. I don’t know about the specifics in the case of these batteries, but GE has actually created new revenue streams with other continuously-monitored devices by selling this data to customers who can use it (because the data is shared on a real-time basis, not just historically) to optimize performance.

Elsewhere, as I’ve mentioned before, General Electric’s William Ruh has said that being able to lift the veil of “Collective Blindness” through feedback from how customers actually use their products has even revolutionized their product design process:

“… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he (Ruh) said. ‘It used to take three years.’”

Back in the ’90’s, I used to lecture and consult on what I called “Natural Wealth,” a paradigm shift in which we’d find all the inspiration we needed for an information-based economy in a table-top terrarium that embodies billion-year-old  principles of nature:

  • embrace chaos, don’t try to control it. (i.e., use open systems rather than proprietary ones)
  • create symbiosis: balance competition with cooperation (IFTTT.com, where you release your APIs to create synergistic mashups with others).
  • close the loop.

With the IoT, we can finally put that last principle into practice, substituting cyclical processes for linear ones.  At long last, the “systems dynamics” thinking pioneered by Jay Forrester and his disciple, Peter Senge, can become a reality. Here’s a closing tip to make that possible: in addition to SAP’s HANA or other analytics packages, look to systems dynamics software such as isee systems’  iThink to model your processes and transform linear into cyclical ones. Now get going: close the loop!

I’ll be on SAP Radio Again Today: the IoT and Big Data

I’ll be on SAP’s “Coffee Breaks With Game Changers” radio again today, live @ 2 EST, appearing again with SAP’s David Jonker, again talking about the IoT and Big Data.  This time I plan to speak about:

  • Integrating real-time and historic data in decision-making:  in the past, it was so hard to glean real-time operating data that we had to operate on the basis of inferring about how to manage the future based on analysis of past data.  Now we have a more difficult challenge: learn to balance past and real-time data.
  • Sharing data in real-time: In the past, data trickled down from top management and might (or might not) eventually get to operators on the shop floor.  Now, everyone can get immediate access to it. Will senior managers continue to be the gatekeepers, or will everyone have real-time access to the data that might allow them to do their jobs more effectively (for example, fine-tuning production processes).

  • Revolutionizing decision-making: Decision-making will also change, because of everyone being able to have simultaneous access to data. Does it really make sense any more for sequential decision-making by various siloed departments when they might all benefit by making the decisions simultaneously and collaboratively, based on the data?

Tune in!

comments: Comments Off on I’ll be on SAP Radio Again Today: the IoT and Big Data tags: , , ,

My #IoT predictions for 2015

I was on a live edition of “Coffee Break With Game-Changers” a few hours ago with panelists Sherryanne Meyer of Air Products and Chemicals and Sven Denecken of SAP, talking about tech projections for 2015.

Here’s what I said about my prognostications:

“I predict that 2015 will be the year that the Internet of Things penetrates consumer consciousness — because of the Apple Watch. The watch will unite both health and smart home apps and devices, and that will mean you’ll be able to access all that usability just by looking at your watch, without having to fumble for your phone and open a specific app.

If Apple chooses to share the watch’s API on the IFTTT – If This Then That — site, the Apple phone’s adoption – and usability — will go into warp speed. We won’t have to wait for Apple or developers to come up with novel ways of using the phone and the related devices — makers and just plain folks using IFTTT will contribute their own “recipes” linking them. This “democratization of data” is one of the most powerful – and under-appreciated – aspects of the IoT. In fact, Sherryanne, I think one of the most interesting IoT strategy questions for business is going to be that we now have the ability to share real time data with everyone in the company who needs it – and even with supply chain and distribution networks – and we’ll start to see some discussion of how we’ll have to change management practices to capitalize on this this instant ability to share.

(Sven will be interested in this one) In 2015, the IoT is also going to speed the development of fog computing, where the vast quantities of data generated by the IoT will mean a switch to processing data “at the edge,” and only passing on relevant data to the cloud, rather than overwhelming it with data – most of which is irrelevant.

In 2015 the IoT is also going to become more of a factor in the manufacturing world. The success of GE’s Durathon battery plant and German “Industry 4.0” manufacturers such as Siemans will mean that more companies will develop incremental IoT strategies, where they’ll begin to implement things such as sensors on the assembly line to allow real-time adjustments, then build on that familiarity with the IoT to eventually bring about revolutionary changes in every aspect of their operations.

2015 will also be the year when we really get serious about IoT security and privacy, driven by the increasing public concern about the erosion of privacy. I predict that if anything can hold back the IoT at this point, it will be failure to take privacy and security seriously. The public trust is extremely fragile: if even some fledgling startup is responsible for a privacy breach, the public will tend to tar the entire industry with the same brush, and that could be disastrous for all IoT firms. Look for the FTC to start scrutinizing IoT claims and levying more fines for insufficient security.”

What’s your take on the year ahead? Would love your comments!

comments: Comments Off on My #IoT predictions for 2015 tags: , , , , , ,

Is GE the future of manufacturing? IoT + nanotech + 3D-printing

The specific impetus for this post was an article in The Boston Globe about heart stents that fit perfectly because they’re 3-D printed individuallly for each patient.

GE jet engine 3-D-printed fuel nozzle

That prompted me to think of how manufacturing may change when three of my favorite technologies — nanotech, 3-D printing and the Internet of Things — are fully mature and synergies begin (as I’m sure they will) to emerge between the three.

I’m convinced we’ll see an unprecedented combination of:

  • waste elimination: we’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • as with the stents, products will increasingly be customized to the customer’s exact specifications.
  • the products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.

Guess what?  The same company is in on the cutting edge of all three: General Electric (no, I’m not on their payroll, despite all my fawning attention to them!):

  • Their Industrial Internet IoT initiative is resulting in dramatic changes to their products, with built-in sensors that relay data constantly to GE and the customer about the product’s current status, allowing predictive maintenance practices that cuts repair costs, optimizing the device’s performance for more economical operations, and even allowing GE to switch from selling products to leasing them, with the lease price determined dynamically using factors such as how many hours the products are actually used.  Not only that, but they practice what they preach, with 10,000 sensors on the assembly line at their Durathon battery plant in Schenectady, plus sensors in the batteries themselves, allowing managers to roam the plant with an iPad to get instant readings on the assembly line’s real-time operation, to fine-tune the processes, and to be able to spot defective batteries while they are still in production, so that 100% of the batteries shipped will work.
    They’re also able to push products out the door more rapidly and updating them quicker based on the huge volumes of data they gather from sensors built into the products: “… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he [William Ruh] said. ‘It used to take three years.’”
  • They’ve made a major commitment to 3-D printing, with 100,000 3-D printed parts scheduled to be built into their precision LEAP jet engines — a big deal, since there’s not a great deal of fault tolerance in something that may plunge to the earth if it malfunctions! As Bloomberg reported, “The finished product is stronger and lighter than those made on the assembly line and can withstand the extreme temperatures (up to 2,400F) inside an engine.”  They’re making major investments to boost the 3-D printers’ capacity and speed.  Oh, and did I mention their precedent-setting contest to crowd-source the invention of a 3-D printed engine mount?
  • They’re also partnering with New York State on perhaps the most visionary technology of all, nanotech, which manipulates materials on the molecular level. GE will focus on cheap silicon carbide wafers, which beat silicon chips in terms of efficiency and power, leading to smaller and lighter devices.

GE is the only member of the original Dow-Jones Index (in 1884) that still exists. As I’ve said before, I’m astounded that they not only get it about IoT technology, but also the new management practices such as sharing data that will be required to fully capitalize on it.

Thomas A. Edison is alive and well!

Interview w/ Echelon for its IoT blog

Just finished a delightful interview with three Echelon staffers for a forthcoming piece on its blog about my prognostications for the Industrial Internet of Things (AKA “Industrial Internet” ien GE-marketing speak).  They’ve been around in this field since the dark ages — 1988, and are now focusing on industrial applications.

My main point to them was the one I made in the SAP “Managing the Internet of Things Revolution” e-guide,  that even though the IoT hasn’t realized its full potential yet, that smart companies would begin creating and executing an IoT strategy now, “to connect their existing infrastructure and enhance key foundational IoT technologies,” optimizing their operating efficiency. Then they could build on that experience to make more fundamental transformations.

We touched 0n several other examples how the IoT could increase operating efficiency or make fundamental transformations:

At any rate, a fun time was had by all, and I’ll let you know when their blog post is up!

http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management