Smart Disposables: Could This Be Birth of Internet of Everything?

Could EVERYTHING be “smart?” It may be happening sooner we thought, and with implications that are hard to fathom today.

That’s the potential with new technology pioneered by Shyam Gollakota, an assistant professor at the University of Washington.  For the first time, it would let battery- and cordless-less devices harvest signals from Wi-Fi, radio, or TV to communicate and power themselves.

Astounding!

For a long time, the most “out there” idea about IoT sensors has been Prof. Kris Pister’s “smart dust” concept, which aimed at a complete sensor/communication system in a package only one cubic millimeter in size. Pister argued that such devices would be so small and cheap that they could be installed — or perhaps even scattered — almost everywhere. The benefits could be varied and inconceivable in the past. According to Pister, possible applications could include:

  • “Defense-related sensor networks
    • battlefield surveillance, treaty monitoring, transportation monitoring, scud hunting, …
  • Virtual keyboard
    • Glue a dust mote on each of your fingernails.  Accelerometers will sense the orientation and motion of each of your fingertips, and talk to the computer in your watch.  QWERTY is the first step to proving the concept, but you can imagine much more useful and creative ways to interface to your computer if it knows where your fingers are: sculpt 3D shapes in virtual clay, play  the piano, gesture in sign language and have to computer translate, …
    • Combined with a MEMS augmented-reality heads-up display, your entire computer I/O would be invisible to the people around you.  Couple that with wireless access and you need never be bored in a meeting again!  Surf the web while the boss rambles on and on.
  • Inventory Control
    • The carton talks to the box, the box talks to the palette, the palette talks to the truck, and the truck talks to the warehouse, and the truck and the warehouse talk to the internet.  Know where your products are and what shape they’re in any time, anywhere.  Sort of like FedEx tracking on steroids for all products in your production stream from raw materials to delivered goods.
  • Product quality monitoring
    • temperature, humidity monitoring of meat, produce, dairy products
      • Mom, don’t buy those Frosted Sugar Bombs, they sat in 80% humidity for two days, they won’t be crunchy!
    • impact, vibration, temp monitoring of consumer electronics
      • failure analysis and diagnostic information, e.g. monitoring vibration of bearings for frequency signatures indicating imminent failure (back up that hard drive now!)
  • Smart office spaces
    • The Center for the Built Environment has fabulous plans for the office of the future in which environmental conditions are tailored to the desires of every individual.  Maybe soon we’ll all be wearing temperature, humidity, and environmental comfort sensors sewn into our clothes, continuously talking to our workspaces which will deliver conditions tailored to our needs.  No more fighting with your office mates over the thermostat.
  • Interfaces for the Disabled (courtesy of Bryndis Tobin)
    • Bryndis sent me email with the following idea: put motes “on a quadriplegic’s face, to monitor blinking & facial twitches – and send them as commands to a wheelchair/computer/other device.”  This could be generalized to a whole family of interfaces for the disabled.  Thanks Bryndis!”

Now imagine that a critical component of such a tiny, ubiquitous device was removed. Because it didn’t need a battery it could be even smaller and cheaper (because of cheaper and simpler radio hardware circuitry).

The goal is having billions of disposable devices start communicating,” Gollakota said (my emphasis).

You may remember that I’ve written before about my metaphor of a pre-IoT era of “Collective Blindness,” the universal inability to peer (literally or figuratively) inside things in the past, which forced us to create all sorts of work-arounds to cope with that lack of real-time data. Imagine how precise our knowledge about just about everything will be if Gollakota’s technology becomes commonplace.

.As Technology Review reported, the critical challenge is making it possible for a device lacking a traditional power source to communicate: “Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.”

The principle making the innovation possible is “backscattering,” reflecting waves, particles or signals back in the direction they came from, which creates a new signal.

The early results are encouraging. Gollakata has made a contact lens that can connect with a smartphone. Think I’ll pass on that one, but other devices he and his team have created include brain implants and “a flexible skin patch that can sense temperature and respiration, a design that could be used to monitor hospital patients.”  Marketers will love this one: a concert poster broadcasting a bit of the featured band’s music over FM radio!

Jeeva Wireless, Gollakata’s commercial spinoff, is using a variety of the technology, “passive Wi-Fi.” Devices using it can data up to 100 feet and connect through walls.

Tiny passive devices using backscatter could be manufactured for as little as a dollar. “In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.”

Gollakata sums up the potential impact: “We can get communication for free” (my emphasis).

That’s incredible, but in light of the continuing series of major DDoS attacks made possible by weak or non-existent IoT security measures, I must remind everyone that speed, power, and ubiquity aren’t everything: we also need IoT security, so I hope the low cost and ability to function without a dedicated energy source won’t obscure that need as well.


 

BTW: a MIT profile on Gollakata mentions one of his other, related, inventions, which I think would mesh beautifully with my SmartAging vision to help seniors age in place in better health.

It’s called  WiSee, which uses wireless signals such as Wi-Fi to “enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources (e.g., a Wi-Fi router and a few mobile devices in the living room).”

I love the concept for seniors, because (like Echo, which I’m finally getting!!) it doesn’t require technical expertise, which many seniors lack and/or find intimidating, to launch and direct automated devices. In this case, the activation is through sensing and recognition of human gestures. According to Gollakata,“’Gestures enable a whole new set of interaction techniques for always-available computing embedded in the environment. As an example, he suggests that a hand swiping motion in the air could enable a user to control the radio volume while showering – or change the song playing on the stereo in the living room while you are cooking in the kitchen.”

He goes on to explain:

“…. that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. ‘We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users.”

Combine that with speaking to Alexa, and even the most frail seniors could probably control most of the functions in a smart home. Gollakota says that the approaches offered today to enable gesture recognition – by either installing cameras throughout a home/office or outfitting the human body with sensing devices – are in most cases either too expensive or unfeasible. So he and his group members are skirting these issues by taking advantage of the slight changes in ambient wireless signals that are created by motion. Since wireless signals do not require line-of-sight and can traverse through walls, he and his group have achieved the first gesture recognition system that works in those situations. “We showed that this approach can extract accurate information about a rich set of gestures from multiple concurrent users, “he says.

Incredible work, professor!

Amazon Leads IoT With Comprehensive Services, Platform & Devices!

Several months ago I predicted that Amazon’s Echo might become the IoT’s killer device, primarily because it is voice activated. It appears that prediction is coming true, which should give the entire consumer IoT a boost because Amazon is also providing a soup-to-nuts approach of devices, platform, and storage meeting a wide range of IoT needs, which puts a real emphasis on customer ease of use.

 Amazon Flywheel

Amazon Flywheel

Even more exciting from my perspective, is that part of that success may be due to something I was unaware of that fits beautifully with my “circular enterprise ” vision of the IoT: Jeff Bezos’ back-of-the-envelope sketch when he founded the behemoth, of what he called the “Amazon Flywheel,” It’s as good an illustration as I can think of regarding my vision of circular organizations and strategy — not to mention their profitability!

Even the WSJ got on board with an article about Amazon in regard to the IoT, although it focused solely on Echo and its voice app, Alexa, and ignored the all-important mechanics that it also provides.

 Amazon IoT Button

Amazon IoT Button

The latest step in fleshing out the ecosystem was the announcement earlier this month of the AWS IoT Button, modeled on its highly successful DASH button, which allows ordering more than 100 different consumer products from Amazon by simply pressing the button (the “button” is also now also available in virtual form as a software service, so that a number of products, such as a Whirlpool smart washing machine, will determine that the owner is running low on detergent, and automatically send an alert to her phone. A simple touch on the phone triggers a refill order from Amazon). The 1st edition IoT button sold out instantly!

It joins a comprehensive, and growing, package of IoT devices and services from Amazon that I suspect will quickly make it the platform of choice for the consumer IoT:

You get the idea: this is a conplete solution, from platform to cloud storage to devices to highly-personal (voice) interface.


 

And there’s that matter of the Amazon Flywheel that I mentioned previously.  I came across it in researching this post, in a blog post by John Rossman in which he referred to the Flywheel as “a long-tested systems dynamic view of Amazon’s core retail and marketplace business” (music to my ears: it was exposure to Jay Forrester & Peter Senge’s work on systems dynamics that first got me interested in cyclical processes, back in the late ’80s). He explains how this continuous loop leads to dynamic growth, especially in Amazon’s infrastructure offerings:

“When thinking through an IoT solution, what is most obvious is the end device.  But this is the classic “tip of the iceberg” in creating an end-to-end solutions.  The IoT Value Chain is defined by devices, connectivity, big data, algorithms, actions, and connection to the rest of the enterprise.  As more and more IoT Devices get introduced, a greater amount of data (both big and small) is generated. This data, once integrated with algorithms create a greater overall customer IoT impact generating more demand for more devices. All of these devices and services can be hosted on AWS and utilize their infrastructure capabilities leading to greater growth of the infrastructure. At this point, the loop looks familiar: infrastructure growth leads to lower costs, which means more services and companies rely on the infrastructure locking into a cycle of higher customer impact.  Amazon Web Services has several existing IoT enabling products include AWS Redshift, AWS Kinesis, AWS Machine Learning and recent acquisition of 2lemetry show that the big bet for Amazon is not in creating devices for its retail business, but in providing cloud infrastructure and software to thousands of companies needing to build IoT devices and capabilities.  This is the AWS IoT flywheel and the real business in IoT for Amazon.”

Yeah, but the bucks that it will get from Dash orders and from Echo ain’t shabby either. Keep up that cyclical thinking, Mr. Bezos!

 

PS: this also makes me more and more confident that Echo and Alexis can be the key to the robust “SmartAging” approach that I visualize because its use of voice will help seniors, especially the tech-averse, manage their health AND their homes and allow them to age in place healthily! Gonna have to get me some partners to go after Alexa Fund backing…

Blogarama - Government Blogs

Zoe: perhaps even better than Echo as IoT killer device?

Zoe smart home hub

I’ve raved before about Echo, Amazon’s increasingly versatile smart home hub, primarily because it is voice activated, and thus can be used by anyone, regardless of tech smarts — or whether their hands are full of stuff.  As I’ve mentioned, voice control makes it a natural for my “SmartAging” concept to help improve seniors’ health and allow them to manage their homes, because you don’t have to understand the underlying technology — just talk.

Now there’s a challenger on the horizon: start-up Zoe, which offers many of Echo’s uses, but with an important difference that’s increasingly relevant as IoT security and privacy challenges mount: your data will remain securely in your home. Or, as their slogan goes:

“So far, smart home meant high convenience, no privacy, or privacy, but no fun. We are empowering you to have both.”

You can still get in on Zoe’s Indegogo campaign with a $249 contribution, which will get you a hub and an extra “voice drop” to use in another room, or the base level, $169 for a single room. Looks kinda cool to me, especially with the easily changed “Art Covers” and backlight coloring (the Che Guevera one looks appropriate for a revolutionary product) …  The product will ship in late 2016.

Don’t get me wrong: I love Echo & will be getting mine soon, but there is that creepy factor given government officials’ fascination with the potential of tapping into smart home data as part of their surveillance. Remember what US Director of Intelligence James Clapper said, ““In the future, intelligence services might use the [internet of things] for identification, surveillance, monitoring, location tracking, and targeting for recruitment, or to gain access to networks or user credentials.” Consider then, that Echo sits there on your kitchen counter, potentially hacked and then hoovering up all of your kitchen chit-chat to relay directly to the spooks.  Wouldn’t you rather that data remained totally under your control?

In addition to storing the data on site rather than in the cloud, Zoe also touts that it has advanced voice-recognition so it can learn IFTTT-style “recipes,” or be operated by apps. She comes with 1,500 built-in voice commands, or, if you stump her, (and only if you choose to, preserving that in-house-only option) web-based Advanced Voice Recognition steps in, with a cloud-based voice recognition system. Her recognition capabilities will grow over time.. Zoe will work with WiFi, Bluetooth, Z-Wave, and other standards.

The company will ship the developers’ kit in six months. It will be open source.

Not being cloud based will mean it loses to Echo on two important counts. For many people, the ability to order things from Amazon simply by speaking may be more important than security concerns,. Also, I notice it doesn’t mention any speakers, so it may be lacking the ability to also serve as a music source (obviously it wouldn’t work with Amazon Music or Apple Music if it isn’t cloud-connected, but it would at least be nice to be able to use it to play your own collection — advantage to Echo on that one.

At least this means there’s competition in the field (and, BTW, I’d love to see Apple swoop in and make THE voice-activated device!)


BTW: Thanks to good buddy Bob Weisberg for the tip about Zoe! Follow him!