Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisensehttp://www.hortidaily.com/article/31774/Hortilux-launches-Hortisense-software-suite, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

Deloitte provides process for nuanced IoT strategy decisions

So much of the Internet of Things is still in the gee-whiz stage that we haven’t seen much in terms of nuanced IoT strategies. By that I mean ones that carefully weigh tradeoffs between companies and consumers to try to find strategies that are mutually beneficial and recognize there are new factors at play in IoT strategies, such as privacy and data mining, that may have positive or negative consequences for the customer/company interplay.

Deloitte’s “University” has made an important step in that direction with its “Power Struggle: Customers, companies and the Internet of Things” paper, co-authored by Brenna Sniderman and Michael E. Raynor.

In it, they explore how to create sustainable strategies that will be mutually beneficial to the customer and company — which are not always immediately apparent, especially when you explore the subtleties of how these strategies might play out in the new reality of the Internet of Things.

The study’s goal was to understand the factors that can distort IoT’s benefits, and instead create win-win IoT strategies.

Sniderman and Raynor suggest there are four quadrants into which a given strategy might fall:

  1. (the sweet spot!) “All’s well: Sufficient value is created, and that value is shared between customers and companies sufficiently equitably such that both parties are better off and feel fairly treated.
  2. “Hobson’s choice: A Hobson’s choice exists when you’re free to decide but only one option exists; thus, it is really no choice at all…. Even when customers come out ahead compared with their former options, their implied powerlessness can lead to feelings of unfairness.
  3. “Gridlock: In their quest for value capture, both sides are pulled in opposite directions, with neither able to move toward an optimal outcome. Here, both parties recognize IoT enablement as something that should lead to success, but neither party is able to reach it, since their competing interests or different value drivers are working at cross purposes.
  4. “Customer is king: Although particular IoT deployments might make economic sense for companies, customers end up capturing a disproportionate share of the new value created, pulling this outcome more in the customers’ favor; Craigslist is an obvious example.”

According to the authors, a key to finding the win-win, “all’s well” solution is the Information Value Loop (which I first discussed last Spring) that creates value out of the vast increase in information made possible by the IoT.

As I mentioned then, “This fits nicely with one of my IoT ‘Essential Truths,’ that we need to turn linear information flows into cyclical ones to fully capitalize on the IoT.” When you do that, it’s possible to design continuous improvement processes that feed back data from actual users to fine tune products and processes.  GE has found it leads to much shorter iterative loops to design improved versions of its products.

Here’s the gussied-up version of the cool hand-drawn visualization from the Deloitte brainstorming session that led to the Information Value Loop (print it & place it on your wall next to the one on privacy and security that I wrote about a while ago):

Deloitte Information Value Loop

The information no longer flows in linear fashion: it’s created from using sensors to record how things act in the real world, then goes through the various stages of the loop, each of which is made possible by one of the new technologies enabling the IoT.  The goal is either enhanced M2M integration among things, or improved actions by humans, and, to be sustainable over time:

“A value loop is sustainable when both parties capture sufficient value, in ways that respect important non-financial sensibilities. For example, retailer-specific and independent shopping apps can use past browsing and purchasing history—along with other behaviors—to suggest targeted products to particular customers, rather than showing everyone the same generic products, as on a store shelf. Customers get what they want, and companies sell more.

…  “The amount of value created by information passing through the loop is a function of the value drivers identified in the middle. Falling into three generic categories—magnitude, risk, and time—the specific drivers listed are not exhaustive but only illustrative. Different applications will benefit from an emphasis on different drivers.”

OK, so how does this theory play out?

Sniderman and Raynor picked a range of IoT-informed strategies to illustrate the concept, some of which may include unintended consequences that would harm/turn off customers or companies. For example, “An ill-considered push for competitive advantage could well overreach and drive away skittish customers. Alternatively, building too dominant an advantage may leave customers feeling exploited or coerced, a position unlikely to prove viable in the long term.”

Understanding the underlying structure of each type of loop is critical, because they naturally pull an IoT strategy in a particular, divergent way.

The example they pick to illustrate the “all’s well” quadrant of results is the dramatic increase in built-in diagnostic technology in cars.  This is of great personal interest: genetic testing has revealed that I am one of the approximately 10% of men who are missing the male car gene: I can’t stand the things, and view them as a big block of metal and plastic just waiting to develop problems (or, ahem, get hit by deer …), so I need all the help I can get. Sniderman and Raynor zero in on maintenance as one area for win-win benefits for drivers and dealers through the IoT:

“Customers often have little understanding of which repairs are necessary, feel inconvenienced by having to go without their car during maintenance periods, and are frustrated by potential overcharges. In response, automakers are embedding sensors that can run a wide range of reliable diagnostics, allowing a car to “self-identify” service issues, rather than relying on customers (“Where’s that squeaking coming from?”) or mechanics (“You might want to replace those brake pads, since I’ve already got the wheels off”). This creates a level of objectivity of obvious customer value and enables automakers to differentiate their products. Interactive features that work with customers’ information can further add value by, for example, potentially syncing with an owner’s calendar to schedule a dealership appointment at a convenient time and reserving a loaner vehicle for the customer, pre-programmed with his preferences to minimize the frustration of driving an unfamiliar car.

In this scenario, both parties collaborate to provide and act on data, in a mutual exchange of value. The customer captures value in multiple ways: He enjoys increased convenience and decreased frustration, improved vehicle performance and longer operating life, reduced maintenance charges, and—since almost everything about this interaction is automated—fewer occasions for perceived exploitation at the hands of unscrupulous service providers.

Value capture extends to companies in the form of ongoing customer interaction. Linking maintenance programming to the dealership encourages customers to return for tune-ups rather than go elsewhere, ideally leading to continued purchases in the long term. OEMs can also access data regarding vehicle maintenance issues and may be able to identify systematic malfunctions worthy of greater attention. Dealers also have an opportunity to make inroads into an untapped market: Currently, just 30 percent of drivers use the dealer for routine maintenance…”

Kumbaya! But then there’s the opposite extreme, according to Sniderman and Raynor, represented by smart home devices, which would lead to the lose-lose, gridlock scenario.  I think they seriously underestimate the understanding already by manufacturers in the field that they need to embrace open standards in order to avoid a range of competing standards (Zigbee, Bluetooth, etc.) that will force consumers to invest in a variety of proprietary, incompatible hubs, and therefore discourage them from buying anything at all.  All you have to do is look at new hubs, such as Amazon’s Echo, which can control devices from WeMo, Hue, Quirky, Wink — you name ’em, to realize that sharing data is already the norm with smart home devices.

Because this missive is getting long, I’ll leave it to you, dear reader, to investigate Sniderman & Raynor’s examples of the “customer is king” scenario, in which the customer grabs too much of the benefit (have to admit, a lot of the location-based IoT retail incentives still give me the creeps: I hate shopping under the best of circumstances, and having something pop up on my phone offering me an incentive based on my past purchases makes a bad experience even worse. How about you?); and the “Hobson’s choice” one, in which usage-based car insurance runs amok and insurers begin to charge unsafe drivers a surcharge — as documented by the devices such as Progressive’s “Snapshot” (I was dismayed to read in the article that Progressive is in fact doing that in Missouri, although I guess it’s a logical consequence of having objective evidence that someone consistently drives unsafely).

I can’t help thinking that the 800-pound gorilla in the room in many of these situations are the Scylla and Charybdis of the IoT, threats to privacy and security, and that makes it even more important that your IoT strategies are well thought out.

They conclude that, from my perspective, data isn’t just enough, you also need the decidedly non-technical tools of judgment and wisdom (aided by tools such as their Information Value Loop) to come up with a sustainable, mutually advantageous IoT strategy:

“Identifying where the bottlenecks lie (using the Information Value Loop), how each party is motivated to respond, and seeking to shape both incentives and the value loop itself puts companies more in control of their destinies.

“Second, taking a hard look at who benefits most from each IoT-enabled transaction, understanding when a lopsided value-capture outcome tips too far and becomes unsustainable, and taking steps to correct it may also lead to long-term success.

“Lastly, an honest assessment of where IoT investments may not have an appreciable benefit—or may decrease one’s potential for value capture—is just as crucial to a company’s IoT strategy as knowing the right places to invest.”

I may quibble with some of their findings, such as those about smart homes, but bravo to Sniderman and Raynor for beginning what I hope is a spirited and sustained dialogue about how to create sustainable, mutually-advantageous IoT strategies!  I’ve weighed in with my Essential Truths, but what are you thinking about this critical issue, often overlooked in our concentration on IoT technologies? 

The IoT Can Revolutionize Every Aspect of Small Farming

When the New York Times weighs in on an Internet of Things phenomenon, you know it’s about to achieve mainstream consciousness, and that’s now the case with what I like to call “precision agriculture,” enabled by a combination of IoT sensors in the fields and big data analysis tools.

The combination is potent and vital because an adequate supply of safe food is so central to our lives, and meeting that need worldwide depends increasingly on small farms, which face a variety of obstacles that big agribusinesses don’t encounter.

Chris Rezendes, a partner in INEX Advisors, who’s been particularly active with IoT-based ag startups, pointed out to me in a private communication that the problem is world-wide, and particularly matched to the IoT’s capabilities, because food security is such a ubiquitous problem and because (surprisingly to me) the agricultural industry is dominated more by small farms, not agri-biz:

“… most people do not have an understanding of the dimensions of food security beyond calories. Feeding the world demands more than just calories. It demands higher nutritional quotient, safety, affordability and accessibility.

“And all that translates in many models into a need for a more productive, profitable and sustainable small ag industry.

“Most folks do not realize that that there are nearly 700 million farmers on the planet. In the US alone, we have 2.3 million ag operations (and, BTW, the number of millennials entering the field is nearly doubling each year) — and that is not counting processing, packaging, distribution, or anything related to fisheries. Most of those farms are pretty small … less than 500 acres on average, and when you strip out the conglomerates and the hobbyist farmers, you are left with hundreds of thousands of small businesses averaging nearly $4 million per year in revenue.”

As reported by The Times‘ Steve Lohr, Lance Donny, founder of ag technology start-up, OnFarm Systems, said the IoT’s benefits can be even greater outside the US:

“.. the most intriguing use of the technology may well be outside the United States. By 2050, the global population is projected to reach nine billion, up from 7.3 billion today. Large numbers of people entering the middle class, especially in China and India, and adopting middle-class eating habits — like consuming more meat, which requires more grain — only adds to the burden.

“To close the food gap, worldwide farm productivity will have to increase from 1.5 tons of grain per acre to 2.5 tons by 2050, according to Mr. Donny. American farm productivity is already above that level, at 2.75 tons of grain per acre.

“’But you can’t take the U.S. model and transport it to the world,’ Mr. Donny said, noting that American farming is both highly capital-intensive and large scale. The average farm size in the United States is 450 acres. In Africa, the average is about two acres.

“’The rest of the world has to get the productivity gains with data,’ he said.”

The marketplace and entrepreneurs are responding to the challenge. The Times piece also reported that IoT-enabled ag is now big business, with a recent study by AgFunder (equity crowdfunding for ag tech!) reporting start-ups have snared $2.06 billion in 228 deals so far this year (compared to $2.36 billion in all of 2014, which was itself a record).  When you add in the big funding that companies such as Deere have done in IoT over the last few years (in case you didn’t know it, this 178-year old company has revolutionized its operations with the IoT, creating new revenue streams and services in the process) and the cool stuff that’s even being produced here in Boston, and you’ve got a definite revolution in the most ancient of industries.

Rezendes zeros in on the small farmers’ need for data in order to improve every aspect of their operations, not just yields, and their desire to control their data themselves, rather than having it owned by some large, remote conglomerates. Most of all, he says, they desperately needed to improve their profitability, which is difficult with smaller farms:

“Those 2.3 million farmers will deploy IoT in their operations when they know that the data is relevant, actionable, profitable, secure and theirs.

“They are not going to deploy third-party solutions that capture farmers’ operational intelligence, claim ownership of it, and leverage the farmers’ livelihood for the solution vendors’ strategic goals.

“For example, we went into a series of explorations with one ag co-op in the East this spring, after going into the exploration thinking that we might be able to source a number of productivity enhancement solutions for vegetable growers and small protein program managers. We were wrong.

“These farmers in this one part of a New England state had been enjoying years of strong, if uneven growth in their output. That was not their challenge: their challenge was with profitability.”

Think of small farms near you, which must be incredibly nimble to market their products (after toiling in the fields!) relying heavily on a mix of CSAs, local restaurants that feature locally-sourced foods, and on farmers’ markets. Rezendes says the small farmers face a variety of obstacles because of their need (given their higher costs) to attract customers who would pay prevailing or (hopefully) premium prices, while they face perceptual problems because small farmers must be jacks-of-all-trades:

“They have only one ‘route.’ They market, sell, and deliver in the same ‘call,’ so their stops are often longer than your typical wholesale food routes. They also have only one marketing, sales and delivery team – and that is often the same team that is tilling, planting, watering, weeding, harvesting and repairing, so they often show up on accounts wearing clothes, driving vehicles, and carrying their inventory in containers that aren’t in any manual for slick brand development manual!

“To complicate things, many of their potential customers could not accept the shipment for insurance purposes, because the farmers didn’t have labels that change with exposure to extreme temperature, sunlight or moisture, or digital temperature recorders.”

Who would think that the IoT might provide a work-around for the perceptual barriers and underscore local farms’ great advantage, the quality of the product?  The farmers suggested to the INEX team once they understood the basics of IoT technology that:

“if we could source a low-cost traceability solution that they could attach to their reusable transport items, they thought they could use that data for branding within the co-op and the regional market. This would reduce the time needed to market and sell, document and file.  The farmers also told us that if the solution was done right, it might serve their regulatory, permitting and licensing requirements, even across state lines.”

Bottom line: not only can sensors in the field improve yields and cut costs for fertilizing and water use through precision, but other sensors can also work after the food is harvested, providing intelligence that lets producers prove their safety, enhance their sales productivity, and drive profit that enables re-investment.

What a great example of the IoT at work, and how, when you start to think in terms of the IoT’s “Essential Truths,” it can revolutionize every aspect of your company, whether a 50-acre farm or a global manufacturer!  

Disney MagicBands: as important symbolically for IoT as substantively!

(I’ve been meaning to write about this particular IoT device for a long time — my apologies for the delay)

I have no objective evidence for this, but I suspect that many C-level executives first learned about e-commerce when they placed personal orders during the Christmas season of 1995. Thus, Amazon deserves a disproportionate share of credit for launching the e-commerce era.

Magic Bands play a number of roles at Disney parks

Similarly, I suspect that many C-level executives’ first direct experience with the Internet of Things has come, or may come this holiday season, with their family’s first visit to Disneyworld since Disney began the beta testing of its MagicBands, which are arguably the most high-profile public IoT devices so far.

IMHO, Disney deserves a lot of credit for such a public IoT project, especially many of the initial reviews were decidedly mixed due to technical and management glitches — risking irritating customers. 

The project reportedly cost north of $1 billion.

The major lesson to decision makers in other industries to be gained from the MagicBand is my favorite IoT “Essential Truth“: who else can use this data?

Disney uses the band data, either by itself, or aggregated with other visitors, to improve almost every aspect of park operations, marketing, and the customer experience — illustrating the versatility of IoT devices:

  • control logistics, speeding entry to the park and individual rides
  • coordinate outside transportation
  • balance demand for various rides
  • add new functionality to existing technology such as the Disney app
  • control mechanical systems, such as hotel door locks
  • add a social component (and avoid the stresses of families getting
  • handle and speed in-park financial transactions
  • personalize the park experience and improve customer satisfaction
  • harvest and analyze big data on customer preferences.

The bands, which work because they have RFID chips inside, are worn on your wrist throughout your stay at the parks. When you book the trip, Disney lets you choose your favorite color, and the band comes in a presentation box with your name on it.

Before leaving, you can program it in conjunction with the My Disney Experience app and web page, entering key choices such as hotels, your favorite rides (FastPass+), dinner reservations, etc., and your credit card info so that they can be used to pay for meals and merchandise.

Disney warns visitors not to pack the bracelets in their luggage, because they are even used to board the transportation from the Orlando airport.

Putting aside the programming involved, this had to be a tremendous logistical challenge, changing the hotel locks, installing readers at each ride, putting readers in the restaurants and shops, which probably accounts for many of the glitches that customers reported during the pilot phase.

My future son-in-law, Greg Jueneman, who knows EVERYTHING about Disneyland, weighs in from a customer standpoint:

“I think they take the spontaneity out of a Disney World vacation. Everything has to be planned in advance and a schedule has to be followed. As a technology they are cool, I’m sure Disney had lots of plans for them but so far the only real thing that they do is open your hotel room without a “key” and allow you to pay for things without your cards (I’m sure Disney loves that! – some blogs Ifollow have said that spending with Magic Bands is up 40%, that’s impressive!).”

As you can imagine, there are also important data privacy and security issues: on one hand, it would probably be very cool to have Mickey come up to you and say “happy 5th birthday, Jeremy,” but that could also creep parents out, and you’d be worried about someone running up a tab on your credit card if you mislaid the band.

From my reading of the most recent media coverage, it appears that most of the beta test problems have been worked out, and that Disney is fully-committed to universal use of the bands in the future.

If you’re visiting Disney this holiday season, think about possible IoT strategy lessons for your company from the MagicBand:

  • marketing: how it can personalize the customer experience and increase sales?
  • transactions: how can it streamline transactions (have to think that Apple looked carefully at this in designing Apple Pay)?
  • operations: how can real-time data from many users help streamline operations and reduce congestion?

Maybe you can write off the family vacation as research! Have fun.

 

Essential Truths of the IoT: Listen to the Things

No, “Listen to the Things” isn’t some sort of zen lesson, although it could be!

It is one of my occasional series of “Essential Truths of the IoT“: fundamental underlying principles that are essential to understanding the true nature of the Internet of Things as a fundamental paradigm shift.

Sensor-equipped GE power turbine

I think particularly of General Electric when I think of this fundamental principle, because GE is turning “listening to things” into major innovations in product design that, in turn, are leading to new ways of marketing their products and new revenue streams.

For example, not only is GE able to optimize production of the advanced cell-phone tower batteries at its state-of-the-art factory in Schenectady, NY because of 10,000 sensors on the assembly line, but also the batteries themselves include built-in sensors that allow GE to monitor their condition.

Thinking in terms of “listening to things” has revolutionized the very way GE markets its jet engines. Some of its new engines contain 20 sensors, which can generate up to a were 20 sensors that monitor the engine’s performance, generating up to a terrabyte of information on a cross-country flight. That allows the airline user to do “predictive maintenance,” which uses actual data on the actual engine — not just some recommended service interval for engines in general, to determine when that specific engine needs maintenance for best performance.

It also gives GE the option of leasing the engine instead of selling it, with the actual price of the lease again dependent on the actual usage of that particular engine, rather than some arbitrary average.

The customer also benefits — as does the global environment. GE calculates that if “an average-sized airline used F&CS  (Fuel and Carbon Solution to achieve a 2% improvement in fuel consumption, it would be equivalent to removing more than 10,000 cars from our roads.”

Here’s the problem — and the opportunity. We’re used to “dumb things” that were inscrutable — you couldn’t “listen” to how they were actually operating if your life depended on it. As a result, we don’t automatically see the opportunities to redesign products to include sensors that will automatically report real-time data about their operating state and possible problems. To capitalize on this “Essential Truth” of the IoT we will have to start asking a new question:

what things that are part of our intrastructure and/or our products
can be redesigned so we can “listen” to them — and 
learn from them?

New McKinsey report on “on-demand marketing”

Posted on 29th April 2013 in 3-D printing, Internet of Things, marketing

As a follow-up to my last post, McKinsey has just written about the advent of “on-demand marketing,” citing the Internet of Things (and, I’d argue, 3-D printing!) as one of the drivers.