Two good sites if you’re introducing the IoT

Categorize this under “posts I’ve been meaning to write for a long time!”

For the current writing assignment I’m working on, I’m looking for as many good examples of practical Internet of Things applications that are available right now.

There are two sites that I repeatedly go to for those examples that deserve some praise.

postscapesOne is Postscapes, which I find to be an important all-around IoT news source. It features products (and links to their sites) in the “Body,” “Home,” “City” and “Industry” categories, as well as a DIY/Open Source grouping. The descriptions are well written and it’s attractive.

The other site is a corporate one, from Libelium, the Spanish open source sensor platform. A portion of its site is devoted to “50 Sensor Applications for a Smarter World,” grouped under “Smart Cities,” “Smart Environment,” “Smart Water,” “Smart Metering,” “Retail,” “Logistics,” “Industrial Control,” “Smart Agriculture,” “Smart Animal Farming,” “Security and Emergencies,” “Domotic and Home Automation,” and “eHealth.” There’s a wealth of accompanying information about — surprise! — the Libelium sensors that are matched to each of these applications. Of course it’s marketing for Libelium, but the range of applications does illustrate the wide range of ways that the IoT is already affecting industry, cities, and personal lives.

Check both sites out — and point your skeptical contacts who wonder if the IoT is just a laboratory curiosity to them!

 

General Electric Keeps on Practicing What They Preach!

I’m beginning to sound like a schill (no, not a typo, just a bad joke: short for [Curt] Schilling, the former Red Sox pitcher — sorry, I can’t get those guys out of my head today…) for GE, but it’s hard to argue with their impressive record of walking their talk about the “Industrial Internet,” their marketing term for the subset of the Internet of Things dealing with the industrial sector.

The latest evidence? A report today in the NYTimes‘ “Bits” blog that GE has just announced “14 more products that combine industrial equipment, Internet-linked sensors and software to monitor performance and analyze big streams of data. G.E. had previously announced 10 similar industrial products.”

Equally impressive, the Industrial Age behemoth turned nimble IoT leader said that by next year, almost all industrial products it makes will have built-in sensors and Big Data software to analyze the huge data streams those sensors will create.

Right now I’m writing an e-book on IoT strategy for C-level executives (not sure if I can disclose the customer — it’s a big one!) and GE VP of Global Software William Ruh, used the news to fire a shot across the bow at companies that are slow to realize a fundamental paradigm shift in manufacturing, product design and maintenance is well underway:

““Everyone wants prediction about performance, and better asset management… The ideas of speed, of information velocity, is what will differentiate the winners from the losers.”

You in the corner office: got your attention?

Equally important, given my insistence that the IoT is all about collaboration, GE simultaneously announced partnerships with Cisco, AT&T and Intel. It had already inked deals with Accenture and Amazon’s cloud subsidiary and has also invested in  Pivotal, an Industrial Internet app creator.

Smart companies will follow GE’s lead in radically reforming the product design process to capitalize on the rapid feedback on performance that the Industrial Internet products’ built-in sensors yield. According to Ruh, they’re switching to an iterative design process, with rapid changes based on data from the field:

“… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies.

“’We’re getting these offerings done in three, six, nine months,’ he said. ‘It used to take three years.’” (my emphasis)

That change is definitely going to make it into my e-book! Brilliant example of how the IoT, by allowing companies to think in terms of systems dynamics, especially feedback loops, will have profound impacts on the design and manufacturing processes, integrating them as never before (oh, and don’t forget, the data from the built-in sensors will also allow companies to start marketing services — such as leasing jet turbines, with the lease cost based on the actual amount of thrust the engines create)!

Combined, that’s definitely a paradigm shift!

Oh, I almost forgot. Here’s a brief rundown of the products themselves and the industries served. They are clustered under the Predictivity name, and are powered by Predix, a new IoT platform:

  • The Drilling iBox System (oil and gas)
  • Reliability Max (oil and gas
  • Field 360 (oil and gas)
  • System 1 Evolution (oil and gas)
  • Non-destructive Testing Remote collaboration (oil and gas)
  • LifeMax Advantage (power and water)
  • Rail Connect 360 Monitoring and Diagnostics (transportation)
  • ShipperConnect (transportation)
  • Flight Efficiency Services (aviation)
  • Hot SimSuite (healthcare)
  • Cloud Imaging (healthcare)
  • Grid IQ Insight (energy management)
  • Proficy MaxxMine (energy management)

Given the diversity of industries the Predictivity products serve and GE’s global clout, I predict this level of commitment will radically accelerate the IoT’s adoption by big business, as well as accelerating the payback in terms of lower operating, energy and maintenance costs, and reduced environmental impacts.

Will GE’s competitors in these sectors get on board, or will they be left in the dust?

 

IoT will streamline supply chain, reduce environmental impact

There’s a new Deloitte white paper that echoes a theme I’ve been repeating since 1990: smart businesses eliminate inefficiency by eliminating environmental waste.

I predict that the Internet of Things will speed that trend by allowing real-time data sharing throughout the supply chain, further increasing its efficiency.

The white paper, “The Evolving Supply Chain: Lean and Green,” says that:

“Leading companies are now finding that a green supply chain doesn’t just improve the public’s perception of their company and brand; it can save money by using resources more efficiently and reducing waste. It can also help to manage risk by insulating a company from shortages and price shocks, and by reducing the chances that a supplier will do something that gets them in hot water.”

It continues by identifying five key factors to reduce:

“Leading companies create value by modifying their supply chains to manage five key inputs and outputs: energy, carbon, water, materials and waste. These five resources are ubiquitous throughout the supply chain and thus offer vast potential for improved efficiency and cost reduction. Energy is expensive to use; carbon, in the form of emissions, represents dollars gone up in smoke; scarcity and commodity inflation are driving up the price of water and materials; and waste is a potential profit thrown away.”

In my speeches on the “Zero-Waste Economy,” I used to suggest that executives that were contemptuous of tree-hugging environmentalists and could care less about generating wastes should just substitute the work inefficiencies for waste. What hard-nosed company could justify inefficiency?

It’s great to see that the message is finally getting mainstream acceptance, and I really do think that the IoT will boost supply chain efficiency and thereby reduce environmental impacts by allowing everyone in the supply chain who needs operating data to share it simultaneously and in real time.

So there’s really no excuse any more for not practicing smart environmentalism, is there?

PS: To get the specifics about how to translate smart environmentalism into profits, check out Gil Friend’s Natural Logic. He’s got the operating manual.

IoT Breakthrough: Ambient Backscatter Allows Battery-less Wireless!

Posted on 20th August 2013 in energy, home automation, Internet of Things, M2M

(BTW: thanx to @TheloT, always a great source of IoT info, for Tweeting this!)

I was impressed when a Harvard research team created a 3-d printed battery the size of a grain of sand, but this is a REAL gamechanger!

CIO reports that  a team of University of Washington researchers have created a new technique, ambient backscatter, which:

“…leverag[es] existing TV and cellular transmissions, rather than generating their own radio waves. This novel technique enables ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.”

Thus, existing wireless signals are transformed into a source of power and a communication medium.

You can imagine the implications for the Internet of Things!

Among other applications, the researchers say ambient backscatter could be used for wearable devices, smart home systems, and sensor networks such as ones embedded in bridges to give advance warning of maintenance problems. It could also be used for NFC payments.

CIO reports that:

“Groups of the devices were tested in a variety of settings in the Seattle area, including inside an apartment building, on a street corner and on the top level of a car park. These locations ranged from less than half a mile away from a TV tower to about 6.5 miles away.

“They found that the devices were able to communicate with each other, even the ones farthest from a TV tower. The receiving devices picked up a signal from their transmitting counterparts at a rate of 1 kilobit per second when up to 2.5 feet apart outdoors and 1.5 feet apart indoors. This is enough to send information such as a sensor reading, text messages and contact information.

“The researchers were able to demonstrate how one payment card can transfer funds to another card by leveraging the existing wireless signals around them.”

The U of Washington team won the prize for the top paper at the Association for Computing Machinery’s Special Interest Group on Data Communication 2013 conference in Hong Kong.

What a breakthrough! It looks like Kris Pister’s “smart dust” vision will be a reality soon!

#IoT breakthrough! 3-D printing tiny batteries to allow “smart dust”

Posted on 1st July 2013 in 3-D printing, energy, Internet of Things, M2M

Last Friday my wife and I were driving through the wilds of Utah (aside: wow, is the West different from The Hub of the Universe!) when we chanced upon SciFri, which was doing a great segment about cool government-funded energy research (no, not the Solindra picking winners-type stuff, but real basic research that can lead to quantum leaps in performance).

One of the speakers was Prof. Jennifer Lewis, who has the all-time greatest academic title:  Hansjörg Wyss Professor of Biologically Inspired Engineering at the Harvard School of Engineering and Applied Sciences! Go biomimicry (just a little reminder, BTW, that nature has already solved every problem that we, as an advanced, information-based economy, face. Think not? The answer to your problem lies just outside your window: we’re just too divorced from nature to be able to see it!)!

OK, got that out of my system…..

Now for the big news: Prof. Lewis’ team and their associates at the University of Illinois have invented the Holy Grail for Internet of Things sensors: lithium-ion batteries the size of a grain of sand, created through 3-D printing (as you may remember, I blogged recently about the role 3-D printing could play in fully-realizing the IoT’s potential. Little did I think it would be this soon, and this direct a role)!

This is a game-changer when it comes to sensors: their size has been getting smaller and smaller, but the big obstacle to realizing Kristofer Pister’s vision of “smart dust” sensors so tiny and self-powered that they could be strewn about was that the batteries were still relatively big and clunky. Lewis’ breakthrough changes all of that.

lithium-ion batteries produced by 3-D printing

The batteries are built by printing precisely interlaced stacks of tiny battery electrodes, each less than the diameter of a human hair.

Here’s the process:

“In this case, the inks also had to function as electrochemically active materials to create working anodes and cathodes, and they had to harden into layers that are as narrow as those produced by thin-film manufacturing methods. To accomplish these goals, the researchers created an ink for the anode with nanoparticles of one lithium metal oxide compound, and an ink for the cathode from nanoparticles of another. The printer deposited the inks onto the teeth of two gold combs, creating a tightly interlaced stack of anodes and cathodes. Then the researchers packaged the electrodes into a tiny container and filled it with an electrolyte solution to complete the battery.”

The research was funded by the National Science Foundation and the DOE Energy Frontier Research Center on Light-Material Interactions in Energy Conversion.

This is so exciting. Now to commercialize the technology and to turn our attention to the real obstacles to the Internet of Things: privacy and security problems!

New IDC report says IoT has reached tipping point for government

As you may know, I’ve been critical of the Obama Administration in the past for ignoring the Internet of Things’ potential. Maybe this report will light a fire under them!

IDC has just released a major report, The Coming of Age of the Internet of Things in Government. Research Director Massimiliano Claps concludes that:

“The Internet of Things is reaching a tipping point that will make it a sustainable paradigm for practical applications. The public sector’s use of the IoT is still limited but emerging strongly in the transport, public security, and environmental sustainability domains …. IoT applications in the public sector can span a variety of domains: public security, defense, environmental protection, transport, and health. In each of these domains, connected objects can provide situational awareness that can help citizens and government personnel act and react at the operational level, monitor the status or behavior of people and assets to make management decisions, and support very fine-grained, sensor-driven analytics that help with planning decisions.”

Couldn’t agree more!

The report says that despite the IoT’s promise to revolutionize a wide range of governmental services, most of the applications to date have focused on environmental monitoring, transportation and security. “The limitations have to do as much with the early stages of the technology as with the management approach to using it.”

It cites some of the emerging m-medicine services that promise to both improve patient care and reduce costs such as around-the-clock mobile vital signs monitoring.

The Coming of Age of the Internet of Things in Government urges agencies to:

“…consider multiple management factors that will influence the ability to harness the benefits of IoT, including the volume, variety, velocity and value of data that are going to be generated, the massive scale of the infrastructure, the complexity of governance, the financial sustainability and the legal aspects.”

I hope this report will prove the impetus for a major new emphasis on governmental applications for the IoT!

Sol Chip: progress in harvesting energy for Internet of Things

Posted on 22nd April 2013 in energy, environmental, Internet of Things

Reducing sensors’ energy needs and meeting them efficiently and without the need for battery replacements is one of the Internet of Things’ important technological obstacles.

That’s why it’s noteworthy that Sol Chip Ltd., an Israeli firm, has won the Technical Development Award  at the 2013 IDTechEx Energy Harvesting & Storage and Wireless Sensor Networks Event.

Its new, patented solar battery technology, the Sol-Chip Energy Harvesterintegrates solar energy sources and low-power electronic devices, eliminating the need for a solar panel while providing long-lasting power for wireless sensors and mobile devices.

The PV cell produces six selectable voltage levels: 0.7 volt, 1.4 volt, 2.1 volt, 2.8 volt, 4.2 volt, 8.4 volt.

Applications include active RFID, security and military, agriculture, livestock sensors, and medical technology.

O’Reilly free e-book gives overview of “industrial internet”

Posted on 18th April 2013 in energy, Internet of Things, manufacturing, transportation

O’Reilly has published a free e-book,  “Industrial Internet,” (underwritten by GE, which, not so coincidentally, uses the industrial internet as the advertising slogan for its own involvement in the field…) about the “coming together to software and big machines.” It’s a great introduction to this crucial portion of the Internet of Things.

The message of the book? “With a network connection and an open interface that masks its underlying complexity, a machine becomes a Web service, ready to be coupled to software intelligence that can ingest broad context and optimize entire systems of machines.

“The industrial internet is this union of software and big machines… It promises to bring the key characteristics of the Web — modularity, abstraction, software above the level of a single device — to demanding physical settings, letting innovators break down big problems, solve them in small pieces, and then stitch together their solutions.”

Author Jon Bruner emphasizes that industrial internet devices don’t necessarily have to be connected to the public Internet: “…rather, it refers to machines becoming nodes on pervasive networks that use open protocols.”

Machines are reconceptualized as services, “…accessible to any authorized application that’s on the network. Those applications make it possible to simplify optimization of the physical devices without requiring as much knowledge. Most importantly, “…the industrial internet makes the physical world accessible to anyone who can recast its problems in terms that software can handle: learning, analysis, system-wide optimization. (my emphasis)”

Bruner points out that the bigger the network (think the entire US air traffic control system) the more optimized it can become. As Big Data takes over software intelligence “will become smarter and more granular.”

Hallmarks of the industrial internet will include:

  • fewer, smarter machines
  • less labor required to operate them
  • “Any machine that registers state data can become a valuable sensor when it’s connected to a network.”

One point that really struck me was that physical products will be able to be improved on the fly, rather than just when a new model is introduced — think of what that means, in particular, for cars, which can often last up to 15 years: it will become possible to change engine settings simply by a software upgrade transmitter via a smartphone app!

“A software update might include a better algorithm for setting fuel-air mixtures that would improve fuel economy. Initiatives like OpenXC8, a Ford program that gives Android developers access to drivetrain data, portend the coming of ‘plug and play intelligence,’ in which a driver not only stocks his car with music and maps through his phone, but also provides his own software and computational power for the car’s drivetrain, updated as often as his phone. One driver might run software that adjusts the car’s driving characteristics for better fuel economy, another for sportier performance. That sort of customization might bring about a wide consumer market in machine controls.

“This could lead to the separation of markets in machines and in controls: buy a car from General Motors and buy the intelligent software to optimize it from Google. Manufacturers and software developers will need to think in terms of broad platforms to maximize the value of both their offerings.”

WOW!

The e-book includes a chapter on the crucial issue of security, arguing that, paradoxically, it may be easier to provide security on an Internet-based network — on the premise that the Internet is constantly challenged by hackers and constantly adapts — than on a more limited network. It mentions Shodan (I’ve been seeing a lot about that one recently!) and Basecamp2 as magnets that attract those who might want to hack the Internet of Things.

There’s also a chapter full of helpful case studies from pioneering industrial internet companies in fields including utilities, HVAC/building controls, automotive (I found that one particularly interesting), aviation, railroads (paradoxically, one of our oldest industries is among the most advanced in its use of sensors and other industrial internet technology, as I’ve reported previously), health care, and manufacturing. Any smart manager should get ideas for his or her company by reading them!

“Industrial Internet” is a must read! Download it today.

 

 

 

 

Optimum Energy Bringing IoT to Building Energy Use

Posted on 15th April 2013 in energy, Internet of Things

You have to wade through some pretty breathless hype in this press release about Optimum Energy to get to the real facts, but this Seattle firm is off to a good start bringing the IoT to building HVAC management.

They call their service “True Optimization,” and say their patented Real-Time Dynamic Commissioning™ (RTDC) system “continuously learns and adapts in real time, and manages a facility’s heating and cooling requirements to produce the lowest possible energy draw.”  It offers predictive diagnostics optimizing an HVAC system’s energy efficiency.

The company stresses use of Big Data in its methodology: they’ve accumulate more than 200 years of cumulative operating data, growing at a rate of 8 incremental years of data per month: “the data enables accurate benchmarking of equipment on system and component performance. Optimum Energy uses this information to provide decision support services, such as data-driven equipment selection and predictive diagnostics.”

The results are pretty impressive for the 66 million sq. ft. of commercial space it serves:

  • Reduced energy consumption by 125 million kW-hours
  • Reduced CO2 emissions by over 190 million lbs.

Matthew Frey, the company’s president and CEO concludes that“Optimum Energy is actively leading the creation of the industrial Internet by bringing cloud connectivity, data analytics and domain expertise to our enterprise customers who want to optimize their HVAC systems.”

I’m convinced that the IoT is our best way forward in dealing with energy and environmental issues without reducing economic growth.

 

 

 

comments: 1 »