Is GE the future of manufacturing? IoT + nanotech + 3D-printing

The specific impetus for this post was an article in The Boston Globe about heart stents that fit perfectly because they’re 3-D printed individuallly for each patient.

GE jet engine 3-D-printed fuel nozzle

That prompted me to think of how manufacturing may change when three of my favorite technologies — nanotech, 3-D printing and the Internet of Things — are fully mature and synergies begin (as I’m sure they will) to emerge between the three.

I’m convinced we’ll see an unprecedented combination of:

  • waste elimination: we’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • as with the stents, products will increasingly be customized to the customer’s exact specifications.
  • the products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.

Guess what?  The same company is in on the cutting edge of all three: General Electric (no, I’m not on their payroll, despite all my fawning attention to them!):

  • Their Industrial Internet IoT initiative is resulting in dramatic changes to their products, with built-in sensors that relay data constantly to GE and the customer about the product’s current status, allowing predictive maintenance practices that cuts repair costs, optimizing the device’s performance for more economical operations, and even allowing GE to switch from selling products to leasing them, with the lease price determined dynamically using factors such as how many hours the products are actually used.  Not only that, but they practice what they preach, with 10,000 sensors on the assembly line at their Durathon battery plant in Schenectady, plus sensors in the batteries themselves, allowing managers to roam the plant with an iPad to get instant readings on the assembly line’s real-time operation, to fine-tune the processes, and to be able to spot defective batteries while they are still in production, so that 100% of the batteries shipped will work.
    They’re also able to push products out the door more rapidly and updating them quicker based on the huge volumes of data they gather from sensors built into the products: “… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he [William Ruh] said. ‘It used to take three years.’”
  • They’ve made a major commitment to 3-D printing, with 100,000 3-D printed parts scheduled to be built into their precision LEAP jet engines — a big deal, since there’s not a great deal of fault tolerance in something that may plunge to the earth if it malfunctions! As Bloomberg reported, “The finished product is stronger and lighter than those made on the assembly line and can withstand the extreme temperatures (up to 2,400F) inside an engine.”  They’re making major investments to boost the 3-D printers’ capacity and speed.  Oh, and did I mention their precedent-setting contest to crowd-source the invention of a 3-D printed engine mount?
  • They’re also partnering with New York State on perhaps the most visionary technology of all, nanotech, which manipulates materials on the molecular level. GE will focus on cheap silicon carbide wafers, which beat silicon chips in terms of efficiency and power, leading to smaller and lighter devices.

GE is the only member of the original Dow-Jones Index (in 1884) that still exists. As I’ve said before, I’m astounded that they not only get it about IoT technology, but also the new management practices such as sharing data that will be required to fully capitalize on it.

Thomas A. Edison is alive and well!

Global Warming: The IoT Can Help Fill Some of the Gap Due to Government Inaction

I won’t dwell on politics here, but  97% of scientists agree that global warming is real, and, according to the latest United National report this month, it is worse than ever (according to the NYTimes,

“The gathering risks of climate change are so profound that they could stall or even reverse generations of progress against poverty and hunger if greenhouse emissions continue at a runaway pace, according to a major new United Nations report.”). (my emphasis)

Thus, it should be noted that the chances of significant government action to curb global warming during the next two years have vanished now that Senator James Inhofe will chair the the Senate Environmental Committee (I won’t repeat any of the clap-trap he has said to deny global warming: look it up…).

While probably not enough to combat such a serious challenge, the Internet of Things will help fill the gap, by helping bring about an era of unprecedented precision in use of energy and materials.

Most important, the IoT is a critical component in “smart grid” electrical strategies, which are critical to reducing CO2 emissions.

According to the Environmental Defense Fund, “Because a smart grid can adjust demand to match intermittent wind and solar supplies, it will enable the United States to rely far more heavily on clean, renewable, home-grown energy: cutting foreign oil imports, mitigating the environmental damage done by domestic oil drilling and coal mining, and reducing harmful air pollution. A smart grid will also facilitate the switch to clean electric vehicles, making it possible to “smart charge” them at night when wind power is abundant and cheap, cutting another huge source of damaging air pollution.”

And then there’s generating electricity from conventional resources: GE, as part of its “industrial internet” IoT strategy, says that it will be able to increase its gas turbines’ operating efficiency (which it says generate 25% of the world’s electricity) by at least 1%.

Equally important, as I’ve written before, “precision manufacturing” through the IoT will also reduce not only use of materials, but also energy consumption in manufacturing.

In other important areas, the IoT can also help reduce global warming:

  • Agriculture: conventional farming is also a major contributor to global warming. “Climate-smart” agriculture, by contrast, reduces the inputs, including energy, needed while maximizing yield (Freight Farms, which converts old intermodal shipping containers into self-contained “Leafy Green Machine” urban farming systems, is a great example!).
  • IoT-based schemes to cut traffic congestion.  As The Motley Fool (BTW, they’re big IoT fans of the IoT as a smart investment opportunity) documents, “1.9 billion gallons of fuel is consumed every year from drivers sitting in traffic. That’s 186 million tons of unnecessary CO2 emissions each year just in the U.S. “

The Motley Fool concludes that, combined, a wide range of IoT initiatives can reduce carbon emissions significantly while increasing the economy’s efficiency:

“A recent report by the Carbon War Room estimates that the incorporation of machine-to-machine communication in the energy, transportation, built environment (its fancy term for buildings), and agriculture sectors could reduce global greenhouse gas emissions by 9.1 gigatons of CO2 equivalent annually. That’s 18.2 trillion pounds, or equivalent to eliminating all of the United States’ and India’s total greenhouse gas emissions combined, and more than triple the reductions we can expect with an extremely ambitious alternative energy conversion program.

“Increased communication between everything — engines, appliances, generators, automobiles — allows for instant feedback for more efficient travel routes, optimized fertilizer and water consumption to reduce deforestation, real-time monitoring of electricity consumption and instant feedback to generators, and fully integrated heating, cooling, and lighting systems that can adjust for human occupancy.”

It always amuses me that self-styled political conservatives are frequently the ones who are least concerned with conserving resources. Perhaps the IoT, by making businesses more efficient, and therefore more profitable, may be able to bring political conservatives into the energy efficiency fold!

Live Blogging from IoT Global Summit

I’ll be live-blogging for the next two days from the 2nd Internet of Things Global Summit.

  • Edith Ramirez, FTC chair:
    • potential for astounding benefits to society, transforming every activity
    • risks: very technology that allows this can also gather info for companies and your next employer
    • possible consumer loss of confidence in connected devices if they don’t think privacy w
    • 3 challenges:
      • adverse uses
      • security of the data
      • collection of the data
    • key steps companies should take:
      • security front and center
      • deidentify data
      • transparent policies
    • data will provide “startlingly complete pictures of us” — sensors can already identify our moods, even progression of neurological diseases
    • how will the data be used? will TV habits be shared with potential employers? Will it paint picture of you that others will see, but you won’t
    • will it exacerbate current socio-economic disparities?
    • potential for data breaches such as Target grows as more data is collected
    • FTC found some companies don’t take even most basic protections. Small size and cheap cost of some sensors may inhibit data protections
    • steps:
      • build security in from beginning
      • security risk assessment
      • test security measures before launch
      • implement defense and depth approach
      • encryption, especially for health data.
    • FTC action against TrendNet
    • follow principle of “data minimization,” only what’s needed, and dispose of it afterwards.
  • she’s skeptical of belief that there should be no limits on collection of data (because of possible benefits)
    • de-identified data: need dual approach — commit to not re-identify data
    • clear and simple notice to consumers about possible use of data.
    • Apple touting that it doesn’t sell data from Health App — critical to building consumer trust
    • transparency: major FTC priority. FTC review of mobile apps showed broad and vague standards on data collection & use.
  • Ilkka Lakaniemi, chair, FIWARE Future Internet PPP, EU perspective on IoT:
    • lot easier to start IoT businesses in Silicon Valley because of redundant regulations in EU
    • Open Standard Platform + Sustainable Innovation Ecosystem. “Synergy Platform”
  • Mark Bartolomeo,   vp of integrated solutions, Verizon:
    • Bakken Shale area visit: “landscape of IoT” solutions — pipeline monitoring, water monitoring, etc.
    • concerned about rapid urbanization: 30% of city congestion caused by drivers looking for parking. $120B wasted in time and fuel yearly.
    • cars: “seamless nodes” of system.
    • market drivers & barriers:
      • increased operational efficiency, new revenue streams, better service, comply with regulators, build competitive edge
      • fragmented ecosystem, complex development, significant back end obstacles
    • they want integrated systems.
    • need to remove barriers: aging infrastructure, congestion, public safety, economics
    • remove complexity
    • economies of scale: common services
    • trend to car sharing, smart grid
    • yea: highlighting intellistreets — one of my 1st fav IoT devices!!
    • Verizon working primarily on parking & traffic congestion on the East Coast, and water management in CA.

Smart Cities:

  • Nigel Cameron: nation-state receding, cities and corporations on ascendency
  • Sokwoo Rhee, NIST: Cyber-Physical Systems — emphasis on systems dynamics, data fed back into system, makes it autonomous.  Did Smart America Challenge with White House. Fragmentation on device level. Demonstrate tangible effects through collaborations. Examples: health care systems, transactive energy management, smart emergency response, water distribution, air quality. 24 projects.  Round Two is application of the projects to actual cities. Now 26 teams.
  • Joseph Bradley, VP, IoT Practice, Cisco Consulting: value isn’t in the devices, but the connections. Intersection of people, data, process, and things. Increase City of Nice’s parking revenue 40-60% without raising taxes through smart parking. They project $19 trillion in value over 10 years from combo of public and private innovations. Smart street lighting: reduces crime, property values increase, free wi-fi from the connected street lights. Barcelona is Exhibit A for benefits. Need: comprehensive strategy (privacy is a contextual issue: depends on the benefits you receive), scalability, apps, data analytics, transparency, powerful network foundation, IoT catalyst for breaking down silos, IoT must address people and process.
  • Ron Sege, chair and ceo of Echelon Corp: got started with smart buildings, 25 yrs. old. Why now with IoT: ubiquitous communications, low cost, hyper-competition, cloud. They do outdoor & indoor lighting and building systems. Challenges: move to one infrastructure/multiple use cases, will IT learn about OT & visa-versa?, reliability: critical infrastructure can’t fail & must respond instantly.
  • Christopher Wolf, Future of Privacy Forum: flexible, use-based privacy standards. Industry-wide approach to privacy: auto industry last week told NISTA about uniform privacy standards for connected cars (neat: will have to blog that…).
  • Peter Marx, chief innovation officer, City of LA:  big program to reduce street lights with LEDs: changed whole look of city at night & saves lot of money. 6 rail lines being built there. Adding smart meters for water & power. EV chargers on street lights. Held hackathon for young people to come up with ideas to improve city. Procurement cycles are sooo arcane that he suggests entrepreneurs don’t do business with city — he just tries to enable them.

Outside the City:

  • Darrin Mylet, Adaptrum: Using “TV white space spectrum” in non-urban areas. Spectrum access critical:need mix of spectrum types. Where do we need spectrum? Most need in non-line-of-sight areas such as trees, etc. Examples: not only rural, but also some urban areas (San Jose); Singapore; Africa; redwood forests;
  • Arturo Kuigami, World Bank: examples in developing nations: (he’s from Peru); most of global migration is to smaller cities; look at cities as ecosystems; “maker movement” is important — different business models: they partnered with Intel and MIT on “FabLabs” in Barcelona this year. MoMo — water access point monitoring in Tanzania.  Miroculus: created by a global ad hoc team — cheap way to make cancer diagnosis: have identified 3-4 types of cancers it can diagnose. Spirometer to measure COPD, made by a 15-year old! “IoT can be a global level playing field.”
  • Chris Rezendes, INEX Advisors: Profitable sustainability: by instrumenting the physical world, we can create huge opportunities for a wide range of people outside our companies. Focusing on doing a better job of instrumenting and monitoring our groundwater supplies: very little being done in SW US right now (INEX investing in a startup that is starting this monitoring). If we have better data on groundwater, we can do a better job of managing it. “Embrace complexity upfront” to be successful.
  • Shudong Chen, Chinese Academy of Sciences: talking about the Chinese food security crisis because of milk production without a food production license.  Government launched “Wuxi Food Science & Technology Park.”

Smart Homes:

  • Tobin Richardson, Zigbee Alliance: critical role of open, global standards. Zigbee LCD lights now down to $15.
  • Cees Links, GreenPeak Technologies: Leader in Zigbee-based smart home devices. Smart home waay more complex than wi-fi.  1m chips a week, vs. 1 million for whole year of 2011. “Not scratching the surface.” Small data — many small packets.
  • Todd Green, CEO PubNub: data stream network.
  • no killer app for the smart home..  Controlling by your phone not really that great a method.
  • FTC agrees with me: a few adverse stories (TrendNet baby cam example) can be really bad for an industry in its infancy.
  • always hole in security. For example, you can tell if no one’s home because volume of wi-fi data drops.W
  • FTC: consumer ed critical part of their work. Working now on best practices for home data protection.
  • mitigation after a security breach? Always be open, communicate (but most hunker down!).

DAY TWO

Beyond Cost Savings: Forging a Path to Revenue Generation

  • Eric Openshaw: (had tech problems during his preso: very important one — check the Deloitte The Internet of Things white paper for details) cost savings through IoT not enough for sustainable advantage: need to produce new revenue to do that. Defined ecosystem shaping up, which creates clarity, breaks down silos.
    • areas: smart grid, health care, home automation, cars, industrial automation
    • study the GE jet model for health care: what if doctors were paid to keep us healthy.
    • need comprehensive understanding of the change issues
    • be very specific: singular asset class, etc. — so you get early victories
    • companies will have overarching, finite roadmap
    • security & privacy dichotomy: differentiate between personal health care data and data from your washing machine. Most of us will share all sorts of information if there’s something in return
    • get focused on customer and product life cycle — that’s where the money will be. Focus on operating metric level. This is most far-reaching tech change he’s seen.

Managing Spectrum Needs

  • Julius Knapp, Chief, FCC Office of Engineering & Technology: new opportunity to combine licensed and unlicensed space. Described a number of FCC actions to reconsider role of various types of spectrum. “Hard to predict I0T’s long-term spectrum needs” because industry is new: they’ll watch developments in the field.
  • Prof. H. Nwana, exec. director of Dynamic Spectrum Alliance: most spectrum usually not used in most places at most time.  His group working to use changes to spectrum to end digital divide: (used incredible map showing how much of world, including US, China, India, W. Europe, could be fitted into Africa).
  • Carla Rath, VP for Wireless Policy, Verizon: “in my world, the network is assumed.”  Need for more spectrum — because of growth in mobile demand. Praises US govt. for trying to make more spectrum available. Don’t want to pigeonhole IoT in certain part of spectrum: allow flexibility.  Tension between flexibility and desire for global standards when it comes to IoT.
  • Philip Marnick, group director of spectrum policy, Ofcom UK:  no single solution.  Market determines best use. Some applications become critical (public safety, etc.) — must make sure people using those are aware of chance of interference.
  • Hazem Moakkit, vp of spectrum development for 03b (UK satellite provider for underserved areas of developing world): “digital divide widened by IoT if all are not on board.” Fair allocation of spectrum vital.
  • interesting question: referred to executive of a major farm equipment manufacturer whose products are now sensor-laden (must be John Deere…) and is frustrated because the equipment won’t work in countries such as Germany due to different bands.

Architecting the IoT: Sensing, Networking & Analytics: 

  • Tom Davenport: IoT highly unpredictable. “Great things about standards is there’s so many to choose from” — LOL.  Will IoT revolution be more top down or bottom up?
  • Gary Butler, CEO, Camgian: announcing an edge system for IoT. Driven by sensor info. Need new networking architecture to combine sensing and analytics to optimize business processes, manage risk. Systems now built from legacy equipment, not scalable. They’re announcing new platform: Egburt. Applicable to smart cities, retailing, ifrastructure (I’ll blog more about this soon!!). “Intelligence out of chaos.” Anomaly detection. Real-time analysis at the device level. Focus on edge computing. Must strengthen the ROI.
  • Xiaolin Lu, Texas Instruments fellow & director of IoT Lab: Working in wearables, smart manufacturing, smart cities, smart manufacturing, health care, automotive. TI claims it has all IoT building blocks: nodes, gateway/bridge or router/cloud.  Power needs are really critical, with real emphasis on energy harvesting from your body heat, vibration, etc. Challenges: sensing and data analytics, robust connectivity, power, security, complexity, consolidation of infrastructure and data. Big advocates for standards. They work on smart grid.
  • Steve Halliday, president, RAIN RFID: very involved in standards. 4 BILLION RFID tags shipped last year. Don’t always want IP devices. Power not an issue w/ RFID because they get their power from the reader. Think RFID will be underpinning of IoT for long time. Lot of confusion in many areas about IoT, especially in manufacturing.
  • Sky Mathews, IBM CTO: IBM was one of earliest in the field, with Smarter Planet. Lot of early ones were RFID. A variety of patterns emerging for where and how data is processed. What APIs do you want to expose to the world? “That’s where the real leaps of magnitude will occur” — so design that in from beginning.

‘People’ Side of the IoT: meeting consumer expectations:

  • Mark Eichorn, asst. director, Consumer Protection Bureau, FTC: companies that have made traditional appliances & now web-enable them aren’t always ready to deal with data theft. Security and privacy: a lot don’t have privacy policies at all. At their workshop, talk about people being able to hack your insulin readings.
  • Daniel Castro, sr. analyst, Center for Data Innovation: thinks that privacy issue has been misconstrued: what people really care about is keeping data from government intrusion. Can car be designed so a cop could pull it over automatically (wow: that’s a thought!). Chance for more liability with misuse of #IoT data.
  • Linda Sherry, director of national priorities, Consumer Action: “convenience, expectations and trust.” “What is the IoT doing beside working?” Connecting everything may disenfranchise those who aren’t connected. Need to register those who collect data – hmm. Hadn’t heard that one before. Even human rights risks, stalking, etc. — these issues must be thought about. Can algorithms really be trusted on issues such as insurance coverage? How do you define particularly sensitive personal data? “Hobbling the unconnected” when most are connected? “Saving consumers from themselves.” “Document the harms.” Make sure groups with less $ can really participate in multi-stakeholder negotiations.
  • Stephen Pattison, vp of public affairs, ARM Holdings: disagrees with Linda about slowing things down: we want to speed up IoT as instrument of transformation. We need business model for it. Talks about how smart phone didn’t explode until providers started subsidizing purchase. He suspects that one model might be that a company would provide you whole range of smart appliances in return for your data. “Getting data right matters.” “Freak events” drive concerns about data security & privacy: they generate concern and, sometimes, “heavy-handed” regulation.
    Industry must work together on framework for data that creates confidence by public. Concerns about data are holding back investment in the field. They’re working with AMD on a framework: consumers own their own data — must start with that (if they do, people will cooperate); not all data equally sensitive — need chain of custody to keep data anomyzed; security must be right at the edge; simplify terms and conditions.
    Sometimes thinks that, in talking about IoT, it’s like talking about cars in 1900, but we managed to create a set of standards that allowed it to grow: “rules of the road,” etc.
comments: 2 »

Another compelling reason for “precision manufacturing”: saving planet

In the space of an hour today I heard a horrifying show on On Point about how the planet is going to hell in a handbasket, then had a very inspiring lunch with Michael Woody of American Dragon, which shows businesses how to bring manufacturing jobs back to the US through a formula of Fewer, Faster, Finer. My takeaway was that the vision I’ve expressed before of creating an “era of precision manufacturing” through the Internet of Things could be the vehicle to both bring back manufacturing jobs to the US (and localities elsewhere across the globe) and to save the planet, making it even more compelling. As I’ve written before, IoT-enabled manufacturing has a wide variety of benefits for manufacturers:

  • unprecedented integration of the factory and both supply chain and distribution network.
  • optimizing production through real-time monitoring and adjustment of assembly line.
  • the potential to speed product introduction and revision through rapid feedback from the field about how the products are actually used.
  • improving decision-making through shared real-time data.

add to those a number of other energy and environmental benefits and you’ve got a really compelling case for “precision manufacturing”:

  • reduced energy consumption through smart grid technologies that allow the plant to have two-way communication with the energy supplier, so energy is supplied in the precise amount needed and precisely when and where it is needed.
  • vastly reduced transportation costs: instead of a supplier in China, you are supplied exactly when you need additional supplies by a local company that shares real-time data on your production output. Similarly, you distribution network knows exactly when and where to distribute the product.
  • lower waste and smaller material needs: a key component of “precision manufacturing” is additive production via 3-D printing, which builds up a product precisely, rather than traditional reductive manufacturing, which trims away excess material from a blank.

“Precision manufacturing” through the IoT: not just better for your bottom line, but also a great way to reduce our growing environmental hazards!

comments: 0 »

Internet of Things critical to attack global warming

I haven’t understood for a long time why there isn’t universal support for serious — and creative — measures to reduce global warming.

I first did a speech on the subject in 1996, and suspect it’s because — wrongly — people confuse energy efficiency with sacrifice, when in fact it’s just using creativity and technology to reduce waste and inefficiency. Who, especially those who style themselves as “conservatives,” could be opposed to that (although recent polls show those Tea Party types just won’t look at the facts..)?

At any rate, as far as I’m concerned, debate on this issue and toleration of “deniers” is no longer an option — we must act, and act NOW — because of the reports by two esteemed scientific panels this week that even if we DO act, catastrophic melting of part of the Antarctic may already be irreversible, ultimately raising ocean levels by 10′ — or more:

“A large section of the mighty West Antarctica ice sheet has begun falling apart and its continued melting now appears to be unstoppable, two groups of scientists reported on Monday. If the findings hold up, they suggest that the melting could destabilize neighboring parts of the ice sheet and a rise in sea level of 10 feet or more may be unavoidable in coming centuries.”

(Aside to Senator Rubio: perhaps scuba expeditions around the former Miami may be a big tourist draw after the apocalypse …).

The Internet of Things can and must play a critical role in such a strategy.

The Environmental Defense Fund’s smart grid initiative, especially its demonstration program in Austin, TX, shows the promise for integrated, large scale programs to turn the electricity system into a truly integrated one where customers will be full partners in demand-side management AND in generation, through small-scale, distributed production from sources such as solar and wind.

Smart AC modlet

But each of us can and must act individually to reduce our carbon footprints, which brings me to a neat device from Thinkeco, the SmartA/C “modlet.” It plugs into the wall socket where you plug in your window-mounted A/C unit, then the A/C plugs into the modelet.

You create a schedule to automatically turn your A/C on and off to save energy. The thermostat also senses the room temp and turns your A/C on and off to maintain a temperature around your set point.  And, rather than keep the A/C on all day when you’re at work just so the apartment will be cool when you get home, you can regulate the temperature from the smartphone app, turning it down before you leave the office.

Several utilities, including Con Ed in NYC, now provide the units to their customers, and they can really make a difference: in New York City alone, there are 6.5 million room air conditioners, which account for up to 2,500 megawatts of demand, or 20 percent of peak demand in the city.  What could be better: an apartment that’s cool when you need it, lower utility bills, and a reduction in greenhouse gases?

Or, there’s Automatic, which plugs into your car’s diagnostic port, and, through Bluetooth, sends you “subtle audio clues” (evidently “SLOW DOWN, IDIOT” doesn’t modify behavior) when it senses you’re accelerating or braking too rapidly or speeding. It also compiles a weekly overall score for your driving — the higher the score, the more economically you’re driving. Hopefully, you’ll modify your driving behavior, save gas money, and reduce emissions (Automatic also has some nice additional features, such as automatically notifying emergency officials if you crash).

I’m a grandfather, and I’m sick about the world that we’re leaving our grandchildren. Let’s all resolve, whether through IoT technology or personal habit change, to tread lightly on the earth and reduce our carbon footprint. It’s no longer a choice.

Failure to inspect oil rigs another argument for “real-time regulation”

The news that the Bureau of Land Management has failed to inspect thousands of fracking and other oil wells considered at high risk for contaminating water is Exhibit A for my argument we need Intnet of Things-based “real-time regulation” for a variety of risky regulated businesses.

According to a new GAO report obtained by AP:

“Investigators said weak control by the Interior Department’s Bureau of Land Management resulted from policies based on outdated science and from incomplete monitoring data….

“The audit also said the BLM did not coordinate effectively with state regulators in New Mexico, North Dakota, Oklahoma and Utah.”

Let’s face it: a regulatory scheme based on after-the-fact self-reporting by the companies themselves backed up by infrequent site visits by an inadequate number of inspectors will never adequately protect the public and the environment.  In this case, the GAO said that “…. the BLM had failed to conduct inspections on more than 2,100 of the 3,702 wells that it had specified as ‘high priority’ and drilled from 2009 through 2012. The agency considers a well ‘high priority’ based on a greater need to protect against possible water contamination and other environmental safety issues.”

By contrast, requiring that oil rigs and a range of other technology-based products, from jet engines to oil pipelines, have sensors attached (or, over time, built in) that would send real-time data to the companies should allow them to spot incipient problems at their earliest stages, in time to schedule early maintenance that would both reduce maintenance costs and reduce or even eliminate catastrophic failures. As I said before, this should be a win-win solution.

If problems still persisted after the companies had access to this real-time data, then more draconian steps could be required, such as also giving state and federal regulators real-time access to the same data — something that would be easy to do with IoT-based systems. There would have to be tight restrictions on access to the data that would protect proprietary corporate information, but companies that are chronic offenders would forfeit some of those protections to protect the public interest.

 

It’s Time for IoT-enabled “Real-Time” Regulation

Pardon me, but I still take the increasingly-unfashionable view that we need strong, activist government, to protect the weak and foster the public interest.

That’s why I’m really passionate about the concept (for what it’s worth, I believe I’m the first to propose this approach)  that we need Internet of Things enabled “real-time regulation” that wouldn’t rely on scaring companies into good behavior through the indirect means of threatening big fines for violations, but could actually minimize, or even avoid, incidents from ever happening, while simultaneously improving companies’ operating efficiency and reducing costly repairs. I wrote about the concept in today’s O’Reilly SOLID blog — and I’m going to crusade to make the concept a reality!

I first wrote about “real-time” regulation before I was really involved in the IoT: right after the BP Gulf blow-out, when I suggested that:

The .. approach would allow officials to monitor in real time every part of an oil rig’s safety system. Such surveillance could have revealed the faulty battery in the BP rig’s blowout preventer and other problems that contributed to the rig’s failure. A procedure could have been in place to allow regulators to automatically shut down the rig when it failed the pressure test rather than leaving that decision to BP.”

Since then I’ve modified my position about regulators’ necessarily having first-hand access to the real-time data, realizing that any company with half a brain would realize as soon as they saw data that there might be a problem developing (as opposed to having happened, which is what was too often the case in the past..) would take the initiative to shut down the operation ASAP to make a repair, saving itself the higher cost of dealing with a catastrophic failure.

As far as I’m concerned, “real-time regulation” is a win-win:

  • by installing the sensors and monitoring them all the time (typically, only the exceptions to the norm would be reported, to reduce data processing and required attention to the data) the company would be able to optimize production and distribution all the time (see my piece on “precision manufacturing“).
  • repair costs would be lower: “predictive maintenance” based on real-time information on equipment’s status is cheaper than emergency repairs.
  • the public interest would be protected, because many situations that have resulted in disasters in the past would instead be avoided, or at least minimized.
  • the cost of regulation would be reduced while its effectiveness would be increased: at present, we must rely on insufficient numbers of inspectors who make infrequent visits: catching a violation is largely a matter of luck. Instead, the inspectors could monitor the real-time data and intervene instantly– hopefully in time to avoid an incident.

Even though the IoT is not fully realized (Cisco says only 4% of “things” are linked at present), that’s not the case with the kind of high-stakes operation we’re most concerned with.  GE now builds about 60 sensors into every jet, realizing new revenues by proving the real-time data to customers, while being able to improve design and maintenance by knowing exactly what’s happening right now to the engines.  Union Pacific has cut dangerous and costly derailments due to bearing failures by 75% by placing sensors along the trackbed.

As I said in the SOLID post, it’s time that government begin exploring the “real-time regulation” alternative.  I’m contacting the tech-savvy Mass. delegation, esp. Senators Markey and Warren, and will report back on my progress toward making it a reality!

Libelium’s Alicia Asín Pérez: crafting an IoT leader from the ground up!

Any time you run into a leading IoT engineer who says she draws inspiration from the early NYC skyscrapers (Why? “..Most of them were built during the Great Depression and make me think that in big crisis like the one we are living there are also the greatest opportunities for creating amazing things.”) you know you’re in for some outside-the-box thinking!

Alicia Asín Pérez of Libelium

That’s the case with Libelium’s Alicia Asín Pérez, who I had a chance to interview just before she was to leave for this year’s Mobile World Congress, where Libelium unveiled its new Smart Water sensors, the latest addition to the eight-year old company’s impressive list of IoT sensors.

What impresses me the most about the company is how Asín and co-founder/CTO David Gascón have pursued their vision of an open-source system (their Waspmote platform “sends any sensors’ data using any communication protocol to any information system so that anyone can play in the IoT”) without compromise from when they started the company.

After attending the Universidad de Zaragoza, the young engineers decided to enter the decidedly un-cool field of hardware, not app design.

They didn’t want to get trapped into serving only one industry vertical (at present they’re serving smart cities, smart water, smart metering, smart environment, security and emergencies, logistics, industrial control, smart agriculture, smart animal farming, home automation, and ehealth.  Any areas they’re not serving?), so they refused to deal with VCs, bootstrapping the company before the days of crowdsourcing. They even appeared on a quiz show for entrepreneurs to get cash, and were prepared to head to Hollywood quiz shows (Asín knows a lot about a lot of subjects, LOL!) if need be.

Libelium is intent about focusing on open source solutions, walking their talk to the point of even using Linux computers.

They also get it about one of my “Essential Truths” of the IoT, that it “democratizes innovation.”  On one hand, Libelium has partnered with major firms such as IBM (with the “Internet Starter Kit”), and, on the other, 30% of its revenues come from its work with the “Maker Movement,” through its “Cooking Hacks” division, which includes:

  • +4000 products for DIY projects
  • Waspmote starter kits
  • Step-by step-tutorials to get started
  • A community forum

Asin sounds like a revolutionary with her call for “democratizing the technology of the Internet of Things,” and speaks proudly of how Libelium quickly created a Radiation Sensor Board used by an ad-hoc network of activists who documented radiation levels after the Fukushima accident. Speaking to Postscapes, she emphasized that while IoT projects by major companies are important, it’s equally important to use the IoT to empower individuals:

When you are in front of such a revolution, you can neglect individuals. It is a big mistake thinking about the IoT players as big companies or just companies. If we look at the general sociopolitical situation, at the citizen movements all across the globe, we see that individuals are just claiming more transparency and not depending on governments and big companies for accessing data: people want Open Data, Open Source, Open Hardware, Open Funding… Because of that, we see projects like Safecast for detecting radiation levels in Fukushima or Air Quality Egg in the Netherlands. People want to do things on their own and are finding support in all the crowdfunding platforms like Kickstarter and companies backing open hardware that allows them to access inexpensive technology. For example, we just launched a kit to experiment with eHealth and we have already sold more than 1,000 units. People are being more creative and innovative than ever, and everyone needs tools for doing that. Those ‘tools’ are sensors and providing them is our vision.” (my emphasis).

It’s too early in the IoT’s evolution to predict the ultimate winners, but I suspect that Libelium’s passion for open systems, its technical expertise at creating a growing array of sensors, and its ability to partner with both big and small firms will help it prosper over the long haul.

Follow-up: Winners in Postscapes’ annual best-of-the-IoT contest

Following up on my recent post on my favorite nominees for the 2013 Postscapes best-of-the-IoT contest, here are the actual winners.  What do you think??

comments: 0 » tags:

Get your vote in for best IoT products of 2013!

Posted on 28th January 2014 in energy, environmental, health, home automation

(sorry: WordPress and I didn’t agree on the formatting for this entry, and WordPress wins!)

Postscapes‘ annual Best of the IoT contest wraps up on the 30th, so don’t miss your chance to vote for last year’s best IoT products!  You owe it to yourself to check out all the nominees: it will give a good overview of how the state-of-the-IoT has evolved, especially when you go back and compare the winners from the past two years.

Here are my personal choices in the various categories, and my reasons for choosing them — the primary criterion being my friend Eric Bonabeau‘s perennial question of new technology, “what can you do now that you couldn’t do before?”

  • Connected Home: I vote for the Mother smart home hub (probably because she looks like something from a Wallace & Gromit short..), cute, efficient, and open source (the leading vote-getter in this category is the iAquaLink pool control system: pardon my doubts, but there ain’t no way any automation system could control my pool: it’s basically a law unto itself!)
  • Connected Body:  Libelium Open Source e-Health Sensor Platform     Libelium does such great work in general, and this one is, to my knowledge, the most all-encompassing Quantified Self monitoring system, monitoring, with 10 different sensors: pulse, oxygen in blood (SPO2), airflow (breathing), body temperature, electrocardiogram (ECG), glucometer, galvanic skin response (GSR-sweating), blood pressure (sphygmomanometer) and patient position (accelerometer). I think it was Dave Evans who said that 30% of all docs will retire in the next decade, while the number of senior/Boomers will increase exponentially. The only way we’ll be able to cope is by making it easy for doctors to know what’s happening with us — in real time!
  • Smart City: On the day we mark environmental activist Pete Seeger’s death, what better than the open-source, crowd-funded Smart Citizen Kit, which empowers citizen activists to monitor environmental conditions! Power to the people, right on!
  • Enterprise: The HyGreen Hand Hygiene Monitoring System.  As I remarked before about a competing system, this is personal, because my cousin acquired a terrible Hospital Acquired Infection. Hand-washing is an absolutely critical hospital procedure, but until now we lacked a fool-proof method to make sure it was done!
  • Technical Enabler: Thingworx expanded their offerings this year with the Thingworx Marketplace, providing developers ..”with the necessary building blocks to rapidly build innovative applications that integrate those connected devices with business systems, social and cloud services, and external systems, enabling them to drive value in the connected world.”
  • Social Impact: OK, I’ll admit a soft spot for any reformer, so I count all these as “winners.” But the one that really caught my I was the Natalia Project, a wristband that alerts people if human rights workers are endangered.  Here’s the story:”In 2009, human rights activist Natalia Estemirova was kidnapped and later found murdered in Chechnya. In part of honoring her and the incident the Swedish organization Civil Rights Defenders is launching the Natalia Project. At the heart of the idea lies a GPS and GSM equipped wristband that when triggered or is forcibly removed will send out an alert and location information to warn that its wearer could be in danger.”
  • Networked Art: as the page says “Artists are often the first to see the potential in new technologies, even before those technologies are mature enough to be used to the consumer” (hmm, don’t think that’s what he meant to say, but you get the drift..) — and don’t forget the Arduino board came from a design school! My choice — hey, why not? — is Alex Kiesling’s “Long-Distance Art” — but the other ones look kewl too!
  • Design Fiction:  I’m going to pass on this one! I must be a little too literally minded!
  • DIY Project: oooh: this harkens back to my “Data Dynamite” book, on liberating data!  Here’s the description of my winner, the Data Sensing Lab:

    “Hardware hacking for data scientists”. By deploying custom wireless hardware at tech conferences like Strata and Google I/O the team is looking to advance what real-time sensor network data collection, analysis, and visualizations will look like in the near future.“We will soon begin to move in a sea of data, our movements monitored and our environments measured and adjusted to our preferences, without need for direct intervention. What will this look like? How can we create and shape it? How can we introduce the relevant hardware to people who already possess data analytics skills?”

  • Open Source: in many ways, the most important category of all, since without open standards the IoT just ain’t gonna go anywhere.  I’m embarrassed that I hadn’t heard of it, but my choice in this category is Alljoyn. As the description says, “AllJoyn is an open source project that provides a software framework and set of Services that enable interoperability among connected products and software applications, across manufacturers, to create dynamic proximal networks.  By integrating the AllJoyn framework codebase, manufactures can offer interoperable products and services that will engage and delight users in new, exciting and useful ways.” Yep.
  • Startup of the Year: I see Evrythng as a critical IoT marketing tool.
  • Must-Follow Company: I’d go with Libelium: they’re so ubiquitous and partner so well with so many.

So those are my choices — some are rather arbitrary because there are no so many promising IoT companies. Who are you voting for, and why??