Mycroft Brings Open-Source Revolution to Home Assistants

Brilliant!  Crowd-funded (even better!) Mycroft brings the rich potential of open-source to the growing field of digital home assistants.   I suspect it won’t be long until it claims a major part of the field, because the Mycroft platform can evolve and grow exponentially by capitalizing on the contributions of many, many people, not unlike the way IFTTT has with its crowd-sourced smart home “recipes.”

According to a fascinating ZD Net interview with its developer, Joshua Montgomery, his motivation was not profit per se, but to create a general AI intelligence system that would transform a start-up space he was re-developing:

“He wanted to create the type of artificial intelligence platform that ‘if you spoke to it when you walked in the room, it could control the music, control the lights, the doors’ and more.”

                         Mycroft

Montgomery wanted to do this through an open-source voice control system but for there wasn’t an open source equivalent to Siri or Alexa.  After building the natural language, open-source AI system to fill that need (tag line, “An Artificial Intelligence for Everyone”) he decided to build a “reference device” as the reporter terms it (gotta love that techno speak. In other words, a hardware device that could demonstrate the system). That in turn led to a crowdsourced campaign on Kickstarter and Backerkit to fund the home hub, which is based on the old chestnut of the IoT, Raspberry Pi. The result is a squat, cute (looks like a smiley face) unit, with a high-quality speaker.  

Most important, when the development team is done with the AI platform, Mycroft will release all of the Mycroft AI code under GPL V3, inviting the open-source community to capitalize and improve on it.  That will place Mycroft squarely in the open-source heritage of Linux and Mozilla.

Among other benefits, Mycroft will use natural language processing to activate a wide range of online services, from Netflix to Pandora, as well as control your smart home devices.

Mycroft illustrates one of my favorite IoT Essential Truths: we need to share data, not hoard it. I don’t care how brilliant your engineers are: they are only a tiny percentage of the world population, with only a limited amount of personal experience (especially if they’re callow millennials) and interests. When you go open source and throw your data open to the world, the progress will be greater as will be the benefits — to you and humanity.

comments: Comments Off on Mycroft Brings Open-Source Revolution to Home Assistants tags: , , , , ,

Human Side of IoT: Local Startup Empowers Forgotten Shop Floor Workers!

Let’s not forget: human workers can and must still pay a role in the IoT!

Sure, the vast majority of IoT focus is on large-scale precision and automated manufacturing (Industrie 4.0 as it is known in Germany, or the Industrial Internet here). However, an ingenious local startup, Tulip, is bringing IoT tools to the workbench and shop floor, empowering individual industrial engineers to create no-code, low-code apps that can really revolutionize things in the factory.  Yes, many jobs will be replaced by IoT tech, but with Tulip, others will be “enabled” — workers will still be there to make decisions, and they’ll be empowered as never before.

Um, I’m thinking superhuman factory Transformers, LOL!

The Tulip IoT gateway allows anyone to add sensors, tools, cameras and even “pick to light bins” (never heard that bit of shop lingo, but they looked cool in video) to the work station, without writing a line of code, because of the company’s diverse drivers support factory floor devices. It claims to “fill the gap between rigid back-end manufacturing IT systems and the dynamic operations taking place on the shop floor.”

Rony Kubat, the young MIT grad who’s the company’s co-founder is on a mission “to revolutionize manufacturing software,” as he says, because people who actually have to play a hands-on roll in product design and production on  shop floor have been ignored in the IoT, and many processes such as training are still paper-based:

“Manufacturing software needs to evolve. Legacy applications neglect the human side of manufacturing and therefore suffer from low adoption. The use of custom, expensive-to-maintain, in-house solutions is rampant. The inability of existing solutions to address the needs of people on the shop floor is driving the proliferation of paper-based workflows and the use of word processing, spreadsheet and presentation applications as the mainstay of manufacturing operations. Tulip aims to change all this through our intuitive, people-centric platform. Our system makes it easy for manufacturers to connect hands-on work processes, machines and backend IT systems through flexible self-serve manufacturing apps”.

While automation in factory floors continues to grow, manufacturers often find their hands-on workforce left behind, using paper and legacy technology. Manufacturers are seeing an enormous need to empower their workforce with intuitive digital tools. Tulip is a solution to this problem. Front-line engineers create flexible shop-floor apps that connect workers, machines and existing IT systems. These apps guide shop-floor operations enabling real-time data collection and making that data useful to workers on factory floors. Tulip’s IoT gateway integrates the devices, sensors and machines on the shop floor, making it easy to monitor and interact with previously siloed data streams (you got me there: I HATE siloed data). The platform’s self-serve analytics engine lets manufacturers turn this data into actionable insights, supporting continuous process improvement.

The company has grown quickly, and has dozens of customers in fields as varied as medical devices, pharma, and aerospace. The results are dramatic and quite varied:

  • Quality: A Deloitte analysis of Tulip’s use at Jabil, a global contract manufacturer, documented 10+% production increases. It reduced quality issues in manual assembly by more than 10%. found production yield increased by more than 10 percent, and manual assembly quality issues were reduced by 60 percent in the initial four weeks of operation.
  • Training: Other customers reduced the amount of time to train new operators by  90 percent, in a highly complicated, customized and regulated biopharmaceutical training situation: “Previously, the only way to train new operators was to walk them repeatedly through all the steps with an experienced operator and a process engineer. Tulip quickly deployed its software along with IoT gateways for the machines and devices on the process, and managed to cut training time almost by half.”
  • Time to Market: They reduced a major athletic apparel maker’s time to market by 50% for hundreds of new product variations. That required constantly evaluating the impact of dozens of different quality drivers to isolate defects’ root causes — including both manual and automated platforms. Before Tulip, it could take weeks of analysis until a process was ready for production. According to the quality engineer on the project, “I used Tulip’s apps to communicate quality issues to upstream operators in real-time. This feedback loop enabled the operators to take immediate corrective action and prevent additional defects from occurring.”

Similar to my friends at Mendix, the no-code/low-code aspect of Tulip’s Manufacturing App Platform lets process engineers without programming backgrounds create shop floor apps through interactive step-by-step work instructions. “The apps give you access through our cloud to an abundance of information and real-time analytics that can help you measure and fine-tune your manufacturing operations,” Tulip Co-Founder Natan Linder says (the whiz-kid is also chairman of 3-D printer startup Formlabs). 

Linder looked at analytics apps that let users create apps through simple tools and thought why not provide the same kind of tools for training technicians on standard operating procedures or for building product or tracking quality defects? “This is a self-service tool that a process or quality engineer can use to build apps. They can create sophisticated workflows without writing code…. Our cloud authoring environment basically allows you to just drag and drop and connect all the different faucets and links to create a sophisticated app in minutes, and deploy it to the floor, without writing code,” he says. Tulip enables sharing appropriate real-time analytics with each team member no matter where they are and to set up personal alerts for the data that’s relevant to each.

IMHO, this is a perfect example of my IoT “Essential Truth” of “empowering every worker with real-time data.”  Rather than senior management parceling out (as they saw fit) the little amount of historical data that was available in the past, now workers can share (critical verb) that data instantly and combine it with the horse sense that can only be gained by those actually doing the work for years. Miracles will follow!

Writ large, the benefits of empowering shop floor workers are potentially huge.  According to the UK Telegraph, output can increase 8-9 %, while cutting costs 7-8%, cutting costs approximately 7-8 percent. The same research estimates that industrial companies “could see as much as a 300 basis point boost to their bottom line.”

Examples of the relevant shop-floor analytics include:

  • “Show real-time metrics from the shop floor
  • Report trends in your operations
  • Send customized alerts based on user defined triggers
  • Inform key stakeholders with relevant data”

IDC Analyst John Santagate neatly sums up the argument for empowering workers through the IoT thusly:

“With all of the talk and concern around the risk of losing the human element in manufacturing, due to the increasing use of robotics, it is refreshing to see a company focus on improving the work that is still done by human hands.  We typically hear the value proposition of deploying robots and automation of improvements to efficiency, quality, and consistency.  But what if you could achieve these improvements to your manufacturing process by simply applying analytics and technology to the human effort?  This is exactly what they are working on at Tulip.  

“Data analytics is typically thought about at the machine level. Manufacturers measure things such as throughput, efficiency, and quality by applying sensors to their manufacturing equipment, capturing the data signals, and conducting analytics.  The analytics provide an understanding of the health of the manufacturing process and enable them to make any necessary changes to improve the process.  Often, such efforts are top down driven.  Management drives these projects in order to improve the performance of the business.  An alternative approach is to enable the production floor to proactively identify improvement opportunities and take action, a bottom-up approach. For this self-service approach to succeed shop-floor engineers need a flexible platform such as Tulip’s, that allows them to replace paper-based processes with technology and build the applications that enable them to manage hands-on processes.  The real time analytics and visibility of hands-on manufacturing processes from Tulip’s platform puts the opportunity to identify improvement opportunities directly in the hands of people engaged in the work cells.

“Digital transformation in manufacturing is about leveraging advanced digital technology to improve how a company operates.  But, as the manufacturing industry focuses on digital transformation it must not forget the value of the human element.  Indeed, we don’t often think about digital transformation in relation to human effort, but this is exactly the sort of thinking that can deliver some of the early wins in digital transformation. “ 

Well said — and thanks to Tulip for filling a critical and often overlooked aspect of the IoT!

I’m reminded of my old friend Steve Clay-Young, who managed the BAC’s shop in Boston, and first alerted me to the “National Home- workshop Guild” which Popular Science started in the Depression and then played a critical part in the war effort. Craftsmen who belonged all got plans and turned out quality products on their home lathes.  I can definitely see a rebirth of the concept as the cost of 3-D printers from Kubat’s other startup, Formlabs drops, and we can have the kind of home (or at least locally-based production that Eric Drexler dreamed of in his great Engines of Creation (which threw in another transformational production technology, nanotech). 

I’m clearing space in my own workshop so I can begin production on IoT/nanotech/3-D printed products. Move over, GE.

comments: Comments Off on Human Side of IoT: Local Startup Empowers Forgotten Shop Floor Workers! tags: , , , , , ,

Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisensehttp://www.hortidaily.com/article/31774/Hortilux-launches-Hortisense-software-suite, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

comments: Comments Off on Servitization With IoT: Weird Biz-Speak, But Sound Strategy tags: , , , , , ,

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”

Yikes!

Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.

 

comments: Comments Off on Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!) tags: , , , , , , ,

More Blockchain Synergies With IoT: Supply Chain Optimization

The more I learn about blockchain’s possible uses — this time for supply chains — the more convinced I am that it is absolutely essential to full development of the IoT’s potential.

I recently raved about blockchain’s potential to perhaps solve the IoT’s growing security and privacy challenges. Since then, I’ve discovered that it can also further streamline and optimize the supply chain, another step toward the precision that I think is such a hallmark of the IoT.

As I’ve written before, the ability to instantly share (something we could never do before) real-time data about your assembly line’s status, inventories, etc. with your supply chain can lead to unprecdented integration of the supply chain and factory, much of it on a M2M basis without any human intervention. It seems to me that the blockchain can be the perfect mechanism to bring about this synchronization.

A brief reminder that, paradoxically, it’s because blockchain entries (blocks) are shared, and distributed (vs. centralized) that it’s secure without using a trusted intermediary such as a bank, because no one participant can change an entry after it’s posted.

Complementing the IBM video I included in my last post on the subject, here’s one that I think succinctly summarizes blockchain’s benefits:

A recent LoadDelivered article detailed a number of the benefits from building your supply chain around blockchain. They paralleling the ones I mentioned in my prior post regarding its security benefits, of using blockchain to organize your supply chain (with some great links for more details):

  • “Recording the quantity and transfer of assets – like pallets, trailers, containers, etc. – as they move between supply chain nodes (Talking Logistics)
  • Tracking purchase orders, change orders, receipts, shipment notifications, or other trade-related documents
  • Assigning or verifying certifications or certain properties of physical products; for example determining if a food product is organic or fair trade (Provenance)
  • Linking physical goods to serial numbers, bar codes, digital tags like RFID, etc.
  • Sharing information about manufacturing process, assembly, delivery, and maintenance of products with suppliers and vendors.”

That kind of information, derived from real-time IoT sensor data, should be irresistible to companies compared to the relative inefficiency of today’s supply chain.

The article goes on to list a variety of benefits:

  • “Enhanced Transparency. Documenting a product’s journey across the supply chain reveals its true origin and touchpoints, which increases trust and helps eliminate the bias found in today’s opaque supply chains. Manufacturers can also reduce recalls by sharing logs with OEMs and regulators (Talking Logistics).
  • Greater Scalability. Virtually any number of participants, accessing from any number of touchpoints, is possible (Forbes).
  • Better Security. A shared, indelible ledger with codified rules could potentially eliminate the audits required by internal systems and processes (Spend Matters).
  • Increased Innovation. Opportunities abound to create new, specialized uses for the technology as a result of the decentralized architecture.”

Note that it the advantages aren’t all hard numbers, but also allowing marketing innovations, similar to the way the IoT allows companies to begin marketing their products as services because of real-time data from the products in the field. In the case of applying it to the supply chain (food products, for example), manufacturers could get a marketing advantage because they could offer objective, tamper-proof documentation of the product’s organic or non-GMO origins. Who would have thought that technology whose primary goal is increasing operating efficiency could have these other, creative benefits as well?

Applying  blockchain to the supply chain is getting serious attention, including a pilot program in the Port of Rotterdam, Europe’s largest.  IBM, Intel, Cisco and Accenture are among the blue-chip members of Hyperledger, a new open source Linux Foundation collaboration to further develop blockchain. Again, it’s the open source, decentralized aspect of blockchain that makes it so effective.

Logistics expert Adrian Gonzalez is perhaps the most bullish on blockchain’s potential to revolutionize supply chains:

“the peer-to-peer, decentralized architecture of blockchain has the potential to trigger a new wave of innovation in how supply chain applications are developed, deployed, and used….(becoming) the new operating system for Supply Chain Operating Networks

It’s also another reminder of the paradoxical wisdom of one of my IoT “Essential Truths,” that we must learn to ask “who else could share this information” rather than hoarding it as in the past. It is the very fact that blockchain data is shared that means it can’t be tampered with by a single actor.

What particularly intrigues me about widespread use of blockchain at the heart of companies’ operations and fueled by real-time data from IoT sensors and other devices is that it would ensure that privacy and security, which I otherwise fear would always be an afterthought, would instead be inextricably linked with achieving efficiency gains. That would make companies eager to embrace the blockchain, assuring their attention to privacy and security as part of the deal. That would be a definite win-win.

Blockchain must definitely be on your radar in 2017.

 

Lo and behold, right after I posted this, news that WalMart, the logistics savants, are testing blockchain for supply chain management!

 

comments: Comments Off on More Blockchain Synergies With IoT: Supply Chain Optimization tags: , , , , , , , ,

Blockchain might be answer to IoT security woes

Could blockchain be the answer to IoT security woes?

I hope so, because I’d like to get away from my recent fixation on IoT security breaches and their consequences,  especially the Mirai botnet attack that brought a large of the Internet to its knees this Fall and the even scarier (because it involved Philips, a company that takes security seriously) white-hat hackers attack on Hue bulbs.  As I’ve written, unless IoT security is improved, the public and corporations will lose faith in it and the IoT will never develop to its full potential.

Now, there’s growing discussion that blockchain (which makes bitcoin possible), might offer a good IoT security platform.

Ironically — for something dealing with security — blockchain’s value in IoT may be because the data is shared and no one person owns it or can alter it unilaterally (BTW, this is one more example of my IoT “Essential Truth” that with the IoT data should be shared, rather than hoarded as in the past.

If you’re not familiar with blockchain, here’s an IBM video, using an example from the highly security-conscious diamond industry, that gives a nice summary of how it works and why:

The key aspects of blockchain is that it:

  • is transparent
  • can trace all aspects of actions or transactions (critical for complex sequences of actions in an IoT process)
  • is distributed: there’s a shared form of record keeping, that everyone in the process can access.
  • requires permission — everyone has permission for every step
  • is secure: no one person — even a system administrator — can alter it without group approval.

Of these, perhaps the most important aspect for IoT security is that no one person can change the blockchain unilaterally, adding something (think malware) without the action being permanently recorded and without every participant’s permission.  To add a new transaction to the blockchain, all the members must validate it by applying an algorithm to confirm its validity.

The blockchain can also increase efficiency by reducing the need for intermediaries, and it’s a much better way to handle the massive flood of data that will be generated by the IoT.

The Chain of Things think tank and consortium is taking the lead on exploring blockchain’s application to the IoT. The group describes itself as “technologists at the nexus of IoT hardware manufacturing and alternative blockchain applications.” They’ve run several blockchain hackathons, and are working on open standards for IoT blockchains.

Contrast blockchain with the current prevailing IoT security paradigm.  As Datafloq points out, it’s based on the old client-server approach, which really doesn’t work with the IoT’s complexity and variety of connections: “Connection between devices will have to exclusively go through the internet, even if they happen to be a few feet apart.”  It doesn’t make sense to try to funnel the massive amounts of data that will result from widespread deployment of billions of IoT devices and sensor through a centralized model when a decentralized, peer-to-peer alternative would be more economical and efficient.

Datafloq concludes:

“Blockchain technology is the missing link to settle scalability, privacy, and reliability concerns in the Internet of Things. Blockchain technologies could perhaps be the silver bullet needed by the IoT industry. Blockchain technology can be used in tracking billions of connected devices, enable the processing of transactions and coordination between devices; allow for significant savings to IoT industry manufacturers. This decentralized approach would eliminate single points of failure, creating a more resilient ecosystem for devices to run on. The cryptographic algorithms used by blockchains, would make consumer data more private.”

I love it: paradoxically, sharing data makes it more secure!  Until something better comes along and/or the nature of IoT strategy challenges changes, it seems to me this should be the basis for secure IoT data transmission!

 

 

 

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.
comments: Comments Off on 2nd day liveblogging, Gartner ITxpo, Barcelona tags: , , , , ,

Live Blogging Gartner ITxpo Barcelona!

After a harrowing trip via Air France (#neveragain) I’m in lovely Barcelona, live-blogging Gartner ITxpo courtesy of Siemens — but they aren’t dictating my editorial judgment.

Keynoter is Peter Sondergaard, Sr. VP, Gartner Research:

  • start with high-scale traditional IT structures, but with new emphasis on cloud, etc. IT system now partially inside your org. and part outside.  We are half-way through transition to cloud: half of sales support now through cloud. More financial, HR & other functions. General trend toward cloud, but still some internal processes as necessary. Must clean up traditional inside processes.
    • “Ecosystems are the next evolution of Digital”
    • Must learn to measure your investments in customer experience.
    • Starting to explore VR & AR (personal shout out to PTC & clients such as Caterpillar!!)
    • must understand customer’s intent through advanced algorithms.  Create solutions to problems they don’t even know they have!
  • next domain of new platform: Things:
    • build strategies with two lenses: consumer preferences, AND the enterprise IoT lens.
    • leverage exponential growth in connected things
    • 27445 exabytes of data by 2020!
    • can’t just bolt on new systems on old ones: must rework existing systems to include devices — processes, workflow, much harder (i.e., my circular company paradigm).
  • intelligence: how your systems learn and decide independently
    • algorithms– algorithmic intelligence — drives decisions
    • now, AI, driven by machine learning. Machines learn from experience.
    • information is new code base
    • we will employ people to train things to learn from experience through neural networks
  • ecosystems
    • linear value supply chains transformed to ecosystems through electronic interchange.
    • others can build experiences, etc. that you haven’t thought out through APIs  — my “share data” Essential Truth. APIs implement business policies in the digital world.c
  • customers
    • customer driven

Where to start?

  • 70% of IoT implementation is through new organization within companies!

Now other Gartner analysts chime in:

  • insurance: engage your customers.
  • smart gov: must interact with those who implement. Must re-imaging public involvement sense/engage/interact
  • case study: Deakin University in Australia: digital platforms to enhance student experience.
  • case study: Trenitalia mass transit system switching to predictive maintenance! Huge cost savings. “Experience hands & beginners mind at work” — love that slogan!!!! “Listen to the train instead of scheduling maintenance”
  • blockchain: ecosystem, brilliant in simplicity. All can see transaction but no one can invade privacy. Use to solve many problems: data provenance, land registry, public infrastucture, AI.
  • Woo: use this to TRANSFORM THE WORLD!!!
  • ratz — I was preoccupied at time, they talked about a new mobility system for seniors — re my SmartAging paradigm!!
  • paradigm shift — partnering with competitors (much of what I wrote about in DataDynamite: share data, don’t hoard it!)  Think about Apple & Google driving car companies’ interfaces. “Do you join hands with digital giants or join hands with them?”).
  • ooh, love the digital assistant correcting his presentation. I can only dream of a future where there are millions added to grammar police!

 

 

comments: Comments Off on Live Blogging Gartner ITxpo Barcelona! tags: , , , , , ,

Don’t Say I Didn’t Warn You: One of Largest Botnet Attacks Ever Due to Lax IoT Security

Don’t say I didn’t warn you about how privacy and security had to be THE highest priority for any IoT device.

On September 19th, Chris Rezendes and I were the guests on a Harvard Business Review webinar on IoT privacy and security. I once again was blunt that:

  • you can’t wait until you’ve designed your cool new IoT device before you begin to add in privacy and security protections. Start on Day 1!
  • sensors are particularly vulnerable, since they’re usually designed for minimum cost, installed, and forgotten.
  • as with the Target hack, hackers will try to exploit the least protected part of the system.
  • privacy and security protections must be iterative, because the threats are constantly changing.
  • responsible companies have as much to lose as the irresponsible, because the result of shortcomings could be held against the IoT in general.

The very next day, all hell broke loose. Hackers used the Mirai malware to launch one of the largest distributed denial-of-service attack ever, on security blogger Brian Krebs (BTW, the bad guys failed, because of valiant work by the good guys here in Cambridge, at Akamai!).

 

The threat was so bad that DHS’s National Cyber Awareness System sent out the first bulletin I ever remember getting from them dealing specifically with IoT devices. As it warned, “IoT devices are particularly susceptible to malware, so protecting these devices and connected hardware is critical to protect systems and networks.”  By way of further explanation, DHS showed how ridiculously simple the attacks were because of inadequate protection:

“The Mirai bot uses a short list of 62 common default usernames and passwords to scan for vulnerable devices. Because many IoT devices are unsecured or weakly secured, this short dictionary allows the bot to access hundreds of thousands of devices. The purported Mirai author claimed that over 380,000 IoT devices  (my emphasis) were enslaved by the Mirai malware in the attack on Krebs’ website.”

A later attack in France during September using Mirai resulted in the largest DDoS attack ever.

The IoT devices affected in the latest Mirai incidents were primarily home routers, network-enabled cameras, and digital video recorders. Mirai malware source code was published online at the end of September, opening the door to more widespread use of the code to create other DDoS attacks.

How’d they do it?

By a feature of the malware that detects and attacks consumer IoT devices that only have default, sometimes hardwired, passwords and usernames (or, as Dark Reading put it in an apocalyptic sub-head, “Mirai malware could signal the beginning of new trend in using Internet of Things devices as bots for DDoS attacks.”

To place the blame closer to home (well, more accurately, in the home!) you and I, if we bought cheap smart thermostats or baby monitors with minimal or no privacy protections and didn’t bother to set up custom passwords, may have unwittingly participated in the attack. Got your attention yet?

 

No responsible IoT inventor or company can deny it any longer: the entire industry is at risk unless corporate users and the general public can be confident that privacy and security are baked in and continuously upgraded. Please watch the HBR webinar if you haven’t already, and pledge to make IoT privacy and security Job #1!


 

PS: According to the DHS bulletin:

“In early October, Krebs on Security reported on a separate malware family responsible for other IoT botnet attacks. This other malware, whose source code is not yet public, is named Bashlite. This malware also infects systems through default usernames and passwords. Level 3 Communications, a security firm, indicated that the Bashlite botnet may have about one million (my emphasis) enslaved IoT devices.”

BTW: thanks for my friend Bob Weisberg for reminding me to give this situation its due!

comments: 6 » tags: , , ,

Circular Company: Will Internet of Things Spark Management Revolution?

Could the IoT’s most profound impact be on management and corporate organization, not just cool devices?

I’ve written before about my still-being-refined vision of the IoT — because it (for the first time!) allows everyone who needs instant access to real-time data to do their jobs and make better decisions to share that data instantly —  as the impetus for a management revolution.

My thoughts were provoked by Heppelmann & Porter’s observation that:

“For companies grappling with the transition (to the IoT), organizational issues are now center stage — and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.”

If I’m right, the IoT could let us switch from the linear and hierarchical forms that made sense in an era of serious limits to intelligence about things and how they were working at thaFor companies grappling with the transition, organizational issues are now center stage—and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.t moment, to circular forms that instead eliminate information “silos” and instead give are circular, with IoT data as the hub. 

This article expands on that vision. I’ve tried mightily to get management journals to publish it. Several of the most prestigious have given it a serious look but ultimately passed on it. That may be because it’s crazy, but I believe it is feasible today, and can lead to higher profits, lower operating costs, empowering our entire workforces, and, oh yeah, saving the planet.

Audacious, but, IMHO, valid.  Please feel free to share this, to comment on it, and, if you think it has merit, build on it.

Thanks,

W. David Stephenson


The IoT Allows a Radical, Profitable Transformation to Circular Company Structure

 

by

W. David Stephenson

Precision assembly lines and thermostats you can adjust while away from home are obvious benefits of the Internet of Things (IoT), but it might also trigger a far more sweeping change: swapping outmoded hierarchical and linear organizational forms for new circular ones.

New org charts will be dramatically different because of an important aspect of the IoT overlooked in the understandable fascination with cool devices. The IoT’s most transformational aspect is that, for the first time,

everyone who needs real-time data to do their jobs better or
make better decisions can instantly 
share it.

That changes everything.

Linear and hierarchical organizational structures were coping mechanisms for the severe limits gathering and sharing data in the past. It made sense then for management, on a top-down basis, to determine which departments got which data, and when.

The Internet of Things changes all of that because of huge volumes of real-time data), plus modern communications tools so all who need the data can share it instantly. 

This will allow a radical change in corporate structure and functions from hierarchy: make it cyclical, with real-time IoT data as the hub around which the organization revolves and makes decisions.

Perhaps the closest existing model is W.L. Gore & Associates. The company has always been organized on a “lattice” model, with “no traditional organizational charts, no chains of command, nor predetermined channels of communication.”  Instead, they use cross-disciplinary teams including all functions, communicating directly with each other. Teams self-0rganize and most leaders emerge spontaneously.

As Deloitte’s Cathy Benko and Molly Anderson wrote, “Continuing to invest in the future using yesteryear’s industrial blueprint is futile. The lattice redefines workplace suppositions, providing a framework for organizing and advancing a company’s existing incremental efforts into a comprehensive, strategic response to the changing world of work.”  Add in the circular form’s real-time data hub, and the benefits are even greater, because everyone on these self-organizing teams works from the same data, at the same time.

You can begin to build such a cyclical company with several incremental IoT-based steps.

One of the most promising is making the product design process cyclical. Designers used to work in a vacuum: no one really knew how the products functioned in the field, so it was hard to target upgrades and improvements. Now, GE has found it can radically alter not only the upgrade process, but also the initial design as well:

“G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. ‘We’re getting these offerings done in three, six, nine months,’ (Vice-President of Global Software William Ruh said). ‘It used to take three years.’”

New IoT and data-analytics tools are coming on the market that could facilitate such a shift. GE’s new tool, “Digital Twins,” creates a wire-frame replica of a product in the field (or, for that matter, a human body!) back at the company. Coupled with real-time data on its status, it lets everyone who might need to analyze a product’s real-time status (product designers, maintenance staff, and marketers, for example) to do so simultaneously.

The second step toward a cyclical organization is breaking down information silos.

Since almost every department has some role in creation and sales of every product, doesn’t it make sense to bring them together around a common set of data, to explore how that data could trigger coordinated actions by several departments? 

Collaborative big-data analysis tools such as GE’s Predix, SAP’s HANA, and Tableau facilitate the kind of joint scrutiny and “what-if” discussions of real-time data that can make circular teamwork based on IoT-data sharing really achieve its full potential.

The benefits are even greater when you choose to really think in circular terms, sharing instant access to that real-time data not only companywide, but also with external partners, such as your supply chain and distribution network – and even customers – not just giving them some access later on a linear basis.  For example, SAP has created an IoT-enabled vending machine. If a customer opts in, s/he is greeted by name, and may be offered “your regular combination” based on past purchases, and/or a real-time discount. That alone would be neat from a marketing standpoint, but SAP also opened the resulting data to others, resulting in important logistics improvements. Real-time machine-to-machine (M2M) data about sales at the new vending machines automatically reroute resupply trucks to those machines currently experiencing the highest sales. 

With the IoT, sharing data can make your own product or service more valuable. With the Apple HomeKit, you can say “Siri, it’s time for bed,” and the Hue lights dim, Schlage lock closes, and Ecobee thermostat turns down. By sharing real-time IoT data, each of these companies’ devices become more valuable in combinations than they are by themselves.

Hierarchical and linear management is outmoded in the era of real-time data from smart devices. It is time to begin to replace it with a dynamic, circular model with IoT data as its hub.

comments: Comments Off on Circular Company: Will Internet of Things Spark Management Revolution? tags: , , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management