No Debate: Protecting Privacy and Security Is 1st Internet of Things Priority

This just in: your Internet of Things strategy will fail unless you make data privacy and security the absolute highest priority.

I didn’t always think that way.

Long-time readers know one of my favorite themes is what I call the IoT “Essential Truths,” the key priorities and attitudinal shifts that must be at the heart of all IoT strategies. I’ve always ranked privacy and security the last on the list:

  1. Share Data (instead of hoarding it, as in the past)
  2. Close the Loop (feed that data back so there are no loose ends, and devices become self-regulating:
  3. Redesign Products so they will contain sensors to feed back data about the products’ real-time status, and/or can now be marketed not as products that are simply sold, but services that both provide additional benefits to customers while also creating new revenue streams for the manufacturer.
  4. Make Privacy and Security the Highest Priority, because of the dangers to customers if personal or corporate data becomes available, and because loss of trust will undermine the IoT.

No longer.

I’ve reversed the order: privacy & security must be the precondition for anything else you do with the IoT, because their absence can undermine all your creativity.

      Newsweek article about Shodan

Newsweek article about Shodan

The specific incident that sparked this reordering of priorities was a recent spate of articles about how Shodan (in mid-2013 I blogged about the dangers of having IoT data show up there — did you pay attention??) — the “search engine for the Internet of Things” — had recently added a new feature that makes it easy-peasy to search unsecured webcams for video of everything from sleeping babies to marijuana farms. According to CNBC:

“‘Shodan has started to grab screenshots for various services where the existing text information didn’t provide much information,’ founder John Matherly wrote in an email. ‘This was launched in August 2015 and the various sources for screenshots have expanded since then — one of those recent additions is for webcams.'”

I’ve written before that I feel particularly strongly about this issue because, unlike engineers who are hell-bent on getting their IoT products and services to market ASAP and at as little cost as possible, I have an extensive background before my IoT days as a crisis management consultant to Fortune 100 companies that had screwed up big time, l0st public trust, and now had to earn it back. As a result, I see IoT privacy and security threats differently.

As I’ve said, a lot of engineers — as left-brained and analytical as I am right-brained and intuitive — simply don’t understand factors such as the fear parents feel when their sleeping babies can be seen anywhere and creeps can yell obscenities at them. After all, fear isn’t factual, its emotional. However, that can no longer be an excuse.

No more Mr. Nice Guy! you must make privacy and security a priority on the first day you brainstorm your new IoT product or service, or you risk losing everything.

As cyber-security expert Paul Roberts says:

“The Internet of Things means that the impact of cyber attacks will now be felt in the physical world and the cost of failing to security IoT endpoints could be measured in human lives, not simply zeroes and ones.
“Like any land grab, the rush to own a piece of the Internet of Things is chaotic and characterized by the trampling of more than a few treasured and valued principles: privacy, security, accountability. As companies clamor to develop the next Nest Thermostat or simply to whitewash aging gear with a web interface and companion mobile app, they’re conveniently forgetting the lessons of the past two decades.”
The key is “security by design.”As Gulio Corragio puts it:
“the principle of data protection by design requires data protection to be embedded within the entire life cycle of the technology, from the very early design stage, right through to its ultimate deployment, use and final disposal. This should also include the responsibility for the products and services used by the controller or processor….
The benefits include:
  • “limit the risk that Internet of Things devices are deemed not compliant with privacy laws avoiding sanctions that under the new EU Privacy Regulation will reach 5% of the global turnover;
  • reducing the potential liabilities deriving from cybercrimes since data breaches have to be reported to privacy regulators only if the data controller is unable to prove to have adopted the security measures adequate to the data processing and
  • exclude liabilities in case of processing of data that are not necessary for the provision of the service also through the usage of anonymization techniques which is relevant especially for B2B suppliers that have no relationship with final users.”

Privacy and security are never-ending requirements for the IoT, because the threats will continue to evolve. Making it a priority from the beginning will reduce the challenge.


I’ll speak on this subject at SAP’s  IoT 2016 Conference, Feb. 16-19, in Las Vegas.

Testing the IoT Waters: 1st Steps in Creating an IoT Corporate Strategy

What if you’re interested in the Internet of Things, but are a little scared of making a major commitment and making major expenditures until you build your familiarity level and start to enjoy some tangible results?

That concern is understandable, especially when prognosticators such as I emphasize what a transformational impact the IoT will have on every aspect of your operations and strategy.

So where to begin?

I’ll speak on this issue at SAP’s  IoT 2016 Conference, Feb. 16-19, in Las Vegas, and hope you can attend. But, if not, or if a teaser might convince you to make the plunge, here’s a summary of my major points, which I hope will motivate you to act sooner, rather than later!

Managing_the_Internet_of_Things_RevolutionThis is an issue that I first visited with my “Managing the Internet of Things Revolution” e-guide to IoT strategy for C-level executives, which I wrote in 2014 for SAP, and which has been successful enough that they’ve translated it into eight languages.

I suggested that the best reason to begin now on creating and executing an IoT strategy was that a lot of the requisite tools for an IoT strategy were also critical to optimize your current operations:

  • invest now in analytical tools (such as SAP’s HANA!), so that you can make sense of the rapidly-expanding amount of data (especially unstructured data) that you are already collecting, with new benefits including predictive analytics that allow you to better predict the future.
  • even before capital equipment is redesigned to incorporate sensors that will yield 24/7 real-time data on their operations and status, consider add-on sensors where available, so you can take the guesswork out of operations.
  • where possible, process sensor data “at the edge,” so that only the relevant data will be conveyed to your processing hub, reducing storage and central processing demands.
  • develop or contract for cloud storage, to handle vastly increased data.
GE Brilliant Factory benefits

GE Brilliant Factory benefits

As I’ll explain my speech, even without launching any major IoT projects such as product redesign or converting products into services, initial IoT projects such as these will dramatically boost your profits and efficiency by allowing unprecedented precision in operations.  I’ll emphasize the example of GE, whose “Brilliant Factory” initiative is aimed at increasing both its own manufacturing efficiency and its customers’ as well. They make a modest, but astonishing claim:

“GE estimates that a 1% improvement in its productivity across its global manufacturing base translates to $500 million in annual savings. Worldwide, GE thinks a 1% improvement in industrial productivity could add $10 trillion to $15 trillion to worldwide GDP over the next 15 years.”

Remember: that’s not exploiting the full potential of the IoT, but simply using it to boost operating efficiency. I see this as bringing about an era of “Precision Manufacturing,” because everyone who needs real-time data about the assembly line and production machinery will be able to share it instantly — including not only all departments within your company but also your supply chain and your distribution network.

In many cases, resupply will be automatic, through M2M processes where data from the assembly line will automatically trigger supply re-orders (and may lead to reshoring of jobs, because the advantages of true “just-in-time” delivery of parts from a supplier located a few miles away will outweigh the benefits of using one on the other side of the world, where delivery times are measured in weeks).  Instead of the current linear progression from supply chain to factory floor to distribution network, we’ll have a continuous loop uniting all of those components, with real-time IoT data as the “hub.”

Again, without making a full-fledged commitment to the IoT, another benefit that I’ll detail is how you’ll be able to dramatically improve workplace safety, especially inherently chaotic and fast-changing worksites such as construction projects and harbors, whose common elements include unpredictable schedules, many companies and contractors, many workers, and many vehicles — a recipe for disaster given current conditions!  However, the combination of simply putting location sensors on the equipment, vehicle, and people can radically decrease the risk. For example,  in Dubai — home to 25% of all construction cranes in the world — SAP partnered with a worldwide leader in construction site safety, SK Solutions. Sensors are located on machinery throughout every site, reporting real-time details about every activity: machinery’s position, movement, weight, and inertia and critical data from other sources (as with the GE Durathon factory’s use of weather data), including wind speed and direction, temperature, and more. Managers can detect potential collisions, and an auto-pilot makes instant adjustments to eliminate operator errors. “The information is delivered on dashboards and mobile devices, visualized with live 3-D images with customizable views.”

As I’ll tell the conference attendees,

“Equally incredible is the change at the Port of Hamburg, Germany’s biggest port, which must juggle 9 million containers and 12,000 vessels a year, not to mention a huge number of trucks and trains. You can imagine the potential for snarls and accidents. Since installing HANA, all of these components, including the drivers and other operators, are linked in real time.  Average waiting time for each truckload has been cut 5 minutes,  and there are 5,000 fewer truck hours daily. The coordination has gotten so precise that, if a trucker will be held up by a bridge opening, the nearby coffee shop will send a discount coupon to his iPad.”

I’ll conclude by mentioning a couple of the long-term components of an IoT strategy, such as redesigning products so that they can be controlled by apps and/or feedback constant information on their status, and considering whether to market products instead as services, where the customer only pays for the products when they’re actually being used, and creating optional data services that customers may choose to buy because they’ll allow the customer to optimize operating efficiency.

But the latter are the long-term challenges and benefits.  For now, I’ll tell the audience that the important thing is to begin now investing in the analytical tools and sensors that will help them boost efficiency.

Hope you can be there!


Oh yeah. Why get started on your IoT strategy now, rather than wait a few more years? Last year, former Cisco Chairman John Chambers said that 40% of the companies attending a recent seminar wouldn’t survive in a “meaningful way” within 10 years if they don’t begin now to embrace the IoT. Sobering, huh?

Why Global Warming Must Be IoT Focus for Everyone

Thanksgiving 2015I want to offer you six great reasons — five of them are seated with my wife and me in this photo — why we all should make global warming a primary focus of IoT projects for the foreseeable future.

There simply is no way to sugar-coat the grim news coming out of the Paris climate talks: even with the most dramatic limits that might be negotiated there, scientists warn we will fall short of the limits in temperature rises needed to avoid global devastation for my grandchildren — and yours.

Fortunately, the Internet of Things can and must be the centerpiece of the drastic changes that we will have to make collectively and individually to cope with this challenge:

“Perhaps one of the most ambitious projects that employ big data to study the environment is Microsoft’s Madingley, which is being developed with the intention of creating a simulation of all life on Earth. The project already provides a working simulation of the global carbon cycle, and it is hoped that, eventually, everything from deforestation to animal migration, pollution, and overfishing will be modeled in a real-time “virtual biosphere.” Just a few years ago, the idea of a simulation of the entire planet’s ecosphere would have seemed like ridiculous, pie-in-the-sky thinking. But today it’s something into which one of the world’s biggest companies is pouring serious money.”

Let me leave you with a laundry list of potential IoT uses to reduce global warming compiled by Cisco’s Dr. Rick Huijbregts:

  • Urban mobility “apps” predict how we can move from A to B in a city in the most environmental friendly manner. Real time data is collected from all modes of city transportation.
  • Using solar energy to power IT networks that in turn power heating, cooling and lighting. Consequently, reduce AC/DC conversions and avoid 70% electricity loss.
  • IP­based, and POE (Power of Ethernet) LED lighting in buildings reduced energy by 50% because of LED and another 50% because of control and automation.
  • Sensors (Internet of Things) record environmental highs and lows, as well as energy consumption. Data analytics allow us to respond in real­time and curtail consumption.
  • Real time insight in energy behaviour and consumption can turn into actionable reduction. 10% of energy reduction can be achieved by behavioural change triggered by simple awareness and education.
  • Working from home while being connected as if one were in the office (TelePresence, Cisco Spark, WebEx, just to name a few networked collaboration tools) takes cars off the road.
  • Grid modernization by adding communication networks to the electrical grid to allow for capacity and demand management.
  • Planning, optimizing, and redirecting transportation logistics based on algorithms, real­time weather and traffic data, and streamlined and JIT shipment and delivery schedules.

These are all great challenges and offer the potential for highly profitable IoT solutions.  For the sake of my six grandchildren, let’s get going!

Data Is the Hub: How the IoT and Circular Economy Build Profits

Fasten your seatbelts! I think I’ve finally zeroed in on the Internet of Things’ (IoT’s) most important potential economic benefit and how it could simultaneously help us escape the growing global environmental crisis:

make real-time IoT data* the hub of a circular economy and management mentality. It’s both good for the bottom line and the planet.

I started writing about circular business models back in the 90’s, when I consulted on profitable environmental strategies, i.e., those that were good both for the corporate bottom line and the planet.  It galled me that executives who railed about eliminating inefficiency thought reducing waste was for tree-huggers. Semantics and lifestyle prejudices got in the way of good strategy.

Ford’s River Rouge Plant (1952 view)

I could see that it was vital that we get away from old, linear models that began with extracting resources and ended with abandoned products in landfills. Ford’s massive 1 x 1.6 mile River Rouge Plant, the world’s largest integrated factory, was the paradigm of this thinking: ore was deposited at one end, made into steel, and cars came out the other (Hank’s penchant for vertical integration even led him to buy rubber plantations! If you have any illusions about the ultimate impossibility of top-down control, watch the PBS documentary on Ford — he simply couldn’t share power, even with his own son — and it almost ruined the company). The linear model worked for a long time, and, truth to tell, it was probably the only one that was feasible in the era of paper-and-pencil information flow:  it was so hard to gather and transmit information that senior management controlled who got what information, and basically threw it over the transom to the next office.

As for any kind of real-time information about what was actually happening on the factory floor: fugetaboutit: all that was possible was for low-level functionaries to shuffle along the assembly line, taking scheduled readings from a few gauges and writing them on a clipboard. Who knew if anyone ever actually read the forms, let alone made adjustments to equipment based on the readings?

Fast forward to 2015, and everything’s changed!

The image of the circular corporation popped back into my head last week while I was searching for an image of how the IoT really can change every aspect of corporate operations, from product design to supply chain management.  I was happily surprised that when I Googled “circular economy” I found a large number of pieces, including ones from consulting gurus Accenture and McKinsey (the most comprehensive report on the concept is probably this one from the Ellen MacArthur Foundation), about the bottom-line and environmental benefits of switching from a linear (‘take-make-dispose’) pattern.

But how to make the circular economy really function? That’s where the IoT comes in, and, in my estimation, is THE crucial element.

Visualize everything a company does as a circle, with IoT-gathered real-time data as its hub. That’s crucial, because everything in a profitable circular company revolves around this data, shared in real time by all who need it.

When that happens, a number of crucial changes that were impossible in the era of linear operations and thinking and limited data became possible for the first time:

  • you can optimize assembly line efficiency because all components of the factory are monitored by sensors in real time, and one process can activate and regulate another, and/or managers and assembly-line workers can fine-tune processes (think of the 10,000 sensors on the GE Durathon battery assembly line).
  • you can integrate the assembly line with the supply chain and distribution and sales network as never before (provided that you share the real-time data with them), so materials are delivered on a just-in-time basis) and production is dictated by real-time data on sales (the SAP smart vending machine, integrated with logistics, is a great example).
  • you can optimize product redesign and upgrades and speed the process, because sensor data from the products as they are actually used in the field is immediately fed back to the designers, so they have objective evidence of what does, and doesn’t work properly (think of how GE has improved its product upgrade process). No more ignorance of how your products are actually used!
  • from an environmental standpoint, having sensors on key components can make it possible for you to recover and profitably remanufacture them (closing the loop) rather than having them landfilled (I was excited to learn that Caterpillar has been doing this for 40 years (!) through its Reman Program, which “reduces costs, waste, greenhouse gas emissions and need for raw inputs.”).
  • you can create new revenue streams, by substituting services for actual sales of products.  I’ve written before about how GE and RollsRoyce do this with jet engines, helping clients be more efficient by providing them with real-time data from jet turbines in return for new fees, and Deere does it with data feeds from its tractors. Now I learn that Phillips does this, with industrial lighting, retaining ownership of the lighting: the customers only pay for the actual use of the lights. Phillips also closes the loop by taking the lights back at the end of their life and/or upgrading them.

As I’ve written before, creating the real-time data is perhaps the easier part: what’s harder is the paradigm shift the circular economy requires, of managers learning to share real-time data with everyone inside the enterprise (and, preferably, with the supply chain, distribution network, retailers, and, yes, even customers). When that happens, we will have unprecedented corporate efficiency, new revenue streams, satisfied customers, and, equally important reduce our use of finite resources, cut pollution, and tread lightly on the earth.  There you have it: the secret to 21st-century profitability is:

real-time IoT data, at the hub of the circular enterprise.


*Oh yeah, please don’t drop a dime on me with the grammar police about the title: in fact, I’m a retired colonel in the Massachusetts Grammar Police, but I’ve given up the fight on “data.” From my Latin training, I know that data are the plural form of datum, but datum is used so infrequently now and data with a singular verb has become so common that I’ve given up the fight and use it as a singular noun.  You can see the issue debated ad nauseum here

Live Blogging from the IoT Global Summit

Keynotes:
Came in on end of presentation by Rep. Suzan DelBene, D-WA, co-chair of the House IoT Caucus and an IT industry vet. Her litany of federal inaction in the face of rapidly-evolving 2015_IoT_Summittech — especially regarding privacy protections, where  the key law was enacted in 1986 — was really dispiriting, although it’s good to know there are some members of Congress who are aware of the issue and working on it.

EU Ambassador to the US, David O’Sullivan: the IoT is a “quantum leap” because of combining digital and physical world, and will have huge implications.  Europe has created single digital market. Major investments in IoT & funding research on it.  Very open research projects.  Key is breaking down barriers within the economy. They’re doing research on every aspect of IoT. Priority must be overcoming vertical silos, such as cars and health care. Must balance regulation and innovation. Security and privacy: working on a new set of protections.

Dean Brenner, SVP for Gov. Affairs, Qualcomm: everything will need some form of connectivity. Will need new connectivity paradigm. 4G LTE gives solid foundation for cellular IoT growth.  5G will be fully-deployed by 2020.

Dr. Rakesh Kushwaha, Mformation (hmmm?) Business Leader, Alcatel-Lucent: securing IoT devices. Tech & standards that are already in place to secure mobile devices can be model for I0T devices: they worked with whole range of devices. Fundamental principle of the security: securely update through device/firmware update package.   Only about 40% of IoT will be cellular-based.  Alcatel securing vehicle-mounted devices using FW/SW updates. They will launch a project called IoT Connect.

Session 2: Security for the IoT

Dean Garfield, president & CEO, Information Technology Industry Council: think of security as a design feature, not afterthought. Have to think of it in global sense (including between vertical silos). Chinese government security demands are actually counterproductive. Security can be a differentiating feature.

Joseph Lorenzo-Hall, chief technologist, Center for Democracy and Technology: “IoT Spectrum of Insanity” — such as #IoT door locks, require protections be built in. Security by design. He thinks privacy is a bigger factor than security.

Stephen Pattison, vp of Public Affairs, ARM. Hacker only has to get it right once. You have to get it right every time!  Sensors will have to be very cheap ($5 or less), which will require real creativity.  Security will drive acceptability of IoT. Security breaches will be a major risk for IoT companies.

Chris Boyer, asst. vp, Global Public Policy, AT&T: different security concerns in each vertical domain. Functional classification determines the risk (for example, some affect interruption on critical infrastructure, or life risk). Virtualize security around the end device. Industry activities: application layers, service layer, network layer, access technologies. Looking 4 acceptable risk management levels.

Rory Gray, global head of sales, Intercede: “need world of trusted digital identities.” “Identity is the new currency.”

Government procurement standards may drive privacy and security by design.

Adam Thierer: are we overestimating how much people really care about IoT security (vs. the “cool” factor??).

Afternoon Privacy Panel:

Gary Shapiro, president & CEO, CSA: he disagrees that you should HAVE to give permission to have your info shared: cites all the benefits of sharing data. Thinks we went overboard with HIPPA & privacy. Announcing agreement on guiding principles for sharing health info from #QS devices. A sense that products will be unwelcomed if they create privacy or security issues: example of an Intel engineer who has vision problems. On a personal basis, his mother had terrible time with Alzheimer’s: he’s upset he won’t have access to a Google face recognition technology.

Rob Atkinson, president, Information Technology and Innovation Foundation: “privacy fundamentalists” argue really heavy regulation is way to protect privacy.  BUT, no empirical studies underlying that. Pew survey showed few people believe their landline or credit card data will be private, YET almost everyone uses credit cards or phones: i.e., no correlation between people’s belief in privacy of various technologies and their actual use of the technology.  Overly stringent privacy regulations will reduce their availability. Much of real value of IoT data is from secondary use of the data, which would be undermined by tough regulation. Way too early to put regulatory regime into place for IoT: too early.

Maneesha Mithal, assoc. director, Division of Privacy & Identity Protection, Bureau of Consumer Protection, FTC: two fairly controversial aspects of their 2013 workshop: minimizing data collection debate — said you shouldn’t collect all sorts of data forever, BUT, perhaps collect less sensitive data if they could still derive value. Second issue was “notice and choice.” Tried a middle ground: room for notice and choice,  Discussion of regulation: middle ground on regulation: shouldn’t have specific IoT regulation, but should have general, baseline privacy and security protections. We don’t bring “gotcha cases.”  Could have program that would provide incentives for self-regulation.

Gilad Rosner, Founder, Internet of Things Privacy Forum:  “notice & choice” has been the default privacy & security approach for Internet, but it “fundamentally places the burden of privacy protection on the individual.” A presidential group said the responsibility should rest with the provider, not the user.  Hallmark of a civil society is being regulated.

Day Two:

smart health panel:

You can access my “Smart Aging” presentation on Slide Share.

Peter Ohnemus of dacadoo, a Swiss company, gave an overview of IoT and healthcare and talked briefly about his company’s Health Score, a 0-1000 score assigned to participating individuals based on their real-time scores on factors including movement, nutrition, sleep and stress.

Chantal Worzala of the American Hospital Association gave an overview of issues such as information interoperability and new wellness incentives.

Robert Jarrin, senior director of gov. affairs for Qualcomm, talked about some of the policy issues. FDA now has dedicated staff for electronic devices, and they are now not requiring regulatory compliance for some basic devices.

Smart Home panel:

Hmm. Little actual focus on smart homes in this one…

Cees Links, ceo, Green Peak Technologies: they are a chip manufacturer, “wireless plumbers.” Shipped 1M Zigbee chips. “IoT is not about things, it’s about services.” “Smart Home should be called a butler.” Confusion about IoT standards: thinks ZigBee & Bluetooth will survive, proprietary standards won’t.

Ilkka Lakaniemi, chair, European Commission’s Future Internet Public-Private Partnership Program: working on smart cities strategies, esp. ones that are scalable. Working with NIST on common standards for the demo grants in US & EU. 61 cities involved.

Tobin Richardson, president & ceo, ZigBee Alliance. ZigBee, wi-fi & Bluetooth will form basis of a stable ecosystem. Dollar chip is the goal, getting there quickly.

Paul Feenstra, sr. vp of government & external affairs, The Intelligent Transport Society of America: evolution over last 5 years from car focus to a really varied multi-modal transportation industry. Shocking how we accept the high death rate & congestion on highways. 80% of crashes could be avoided by connected cars.

Business Models for the IoT:

Ana Sancho, Libellium: they manufacture sensor networks for the IoT. Solve problems from smart cities to agriculture & water resources. More than 90 different sensors. They just see very early testing the water with IoT on part of their clients: not widescale implementation.

 

 

 

 

 

 

 

I’ll Speak Twice at Internet of Things Global Summit Next Week

I always love the Internet of Things Global Summit in DC because it’s the only IoT conference I know of that places equal emphasis on both IoT technology and public policy, especially on issues such as security and privacy.

At this year’s conference, on the  26th and 27th, I’ll speak twice, on “Smart Aging” and on the IoT in retailing.

2015_IoT_SummitIn the past, the event was used to launch major IoT regulatory initiatives by the FTC, the only branch of the federal government that seems to really take the IoT seriously, and understand the need to protect personal privacy and security. My other fav component of last year’s summit was Camgian’s introduction of its Egburt, which combines “fog computing,” to analyze IoT data at “the edge,” and low power consumption. Camgian’s Gary Butler will be on the retail panel with me and with Rob van Kranenburg, one of the IoT’s real thought leaders.

This year’s program again combines a heady mix of IoT innovations and regulatory concerns. Some of the topics are:

  • The Internet of Things in Financial Services and the Insurance sector (panel includes my buddy Chris Rezendes of INEX).
  • Monetizing the Internet of Things and a look at what the new business models will be
  • The Connected Car
  • Connected living – at home and in the city
  • IoT as an enabler for industrial growth and competition
  • Privacy in a Connected World – a continuing balancing act

The speakers are a great cross-section of technology and policy leaders.

There’s still time to register.  Hope to see you there!

 

 

Claro’s IoT Strategy Creation Guide: important in own right & symbolically

IoT_strategy_cards

Claro IoT Service Diagram Cards — collect the whole set!

Some IoT advances are as important symbolically (especially as key steps in the IoT’s maturation) as in their own right.

I consider Claro Partners‘s new “A Guide to Succeeding in the Internet of Things” in that vein, both showing that it’s not just enough to create a whizbang IoT device or app — you need a methodical strategy to maximize the benefits– and providing a very practical tool to create such a strategy. Written as the IoT reaches the top of the Gartner Hype Cycle, it aims at helping readers identify and meet real user needs and create viable business models. Based on several conversations at last night’s Boston IoT Meetup, it couldn’t be more timely, as (for example) smart home device sales slump, as reflected in Quirky’s bankruptcy.

Claro, in case you haven’t heard about them before, is headquartered in my favorite “smart city,” Barcelona, and is known for its Clayton Christensen-style emphasis on the opportunities presented by disruptive change (hmm: wonder if they have wei ji ideograms on the wall, LOL?), particularly with the IoT.

The Guide is a quick read, but can inspire you for a long time to come.

It’s divided into four portions, which I’m guessing codify the process that Claro uses internally to brainstorm strategies for its own clients:

  1. Define the challenge. “Identify a user-centric challenge to solve.”
  2. Ideate* the solution. “Create a solution that provides new value to the user.”
  3. Develop the offer. “Map out the ecosystem and interactions of your product and service.”
  4. Plan for production. “Identify resources needed and conduct gap analysis.”

They suggest you follow these steps sequentially, even if you already have a solution in mind, because “the exercises will help you to refine, develop or rethink it.”

Now for the details, which include very specific steps and some very helpful graphic aids.

First, Define the challenge. They stress you need to avoid being seduced by the lure of doing something just because it’s technologically possible. Make sure it meets a real
human need. The initial categories they suggest include:

    • Human Needs FrameworkAgeing population (sweeeeet! My “smart aging” paradigm shift!)
    • Work-life balance
    • Urban life
    • Health and wellbeing
    • Local Communities
    • Education
    • Sustainability/Shopping
    • Tourism, Family.

Then Claro suggests that your team go through a 30-minute process where it uses the four questions in this “human needs framework,” such as “what do people want to control?” and decide which challenge you’re going to design for (assume you could think big and try for one that meets multiple questions).

Second, Ideate the solution.  Similar to my “What can you do now that you couldn’t do before” question, this one asks you to not just use the IoT to refine a current approach to the issue you identified, but to “reimagine entirely new capabilities and value that an IoT service can deliver.”

This 40-min. process includes defining the person facing the challenge and aspects of their life, then brainstorming solutions to meet their real needs and how the IoT could be used to enable that solution.

Third, Develop the offer. They share my concern about proprietary IoT solutions, (which they label “intranet of things, LOL), and instead remind your team to, IFTTT-like,

IoT Service Diagram

IoT Service Diagram

“take advantage of the ecosystem enabled by the IoT to create interconnected services, experiences and business models.” In this process, which they estimate takes 40 minutes, you print out the IoT Service Diagram Cards (see above — I imagine “flipping” them and trading with the other kids on the playground, until our Moms throw out our collections…) and use them to map out how your idea will work, including drawing the data flow (don’t forget my dictum that data flow must be cyclical with the IoT!).  The important questions to ask — make sure to ask all of them! — include:

  • Will the device just provide information to the user or will it act on that information?
  • What are the specific inputs/outputs of the service? (eg. sight, sounds, touch, taste, smell, temperature)
  • Could the device learn through its use over time and adapt its behaviour accordingly?
  • Could the service use existing devices, data streams or interfaces?

Finally, in the fourth step, (30 minutes? Dream on!) the rubber hits the road, and you

IoT Canvas

IoT Canvas

Plan for Production!  Claro warns, “Don’t underestimate the complexity of bringing to life an offer that spans both the physical and digital, Do map out all the elements you’ll need to successfully develop and deliver your IoT offer.”

On the IoT Canvas, you bring together all the crucial considerations, such as manufacturing and logistics, revenues and costs, that must be nailed down to make the product affordable and profitable.  Specifically, Claro says you need to specifically state the offer’s value proposition to the end user, use the questions in each box on the form as prompts, fill out the rest of the canvas with details of the product and service idea, and write down “which resources, capabilities and processes you have, and which you’d need to acquire (gap analysis).”

I agree with Claro that these four steps, especially the last one, are iterative, and you need to revisit each of them throughout the entire conceptual and production process.

I have no doubt that, as IoT technology (especially miniscule, low-energy sensors) and experience continues to evolve, this process will be refined, but Claro has done the entire IoT industry, especially makers and entrepreneurs, a real service by codifying this approach and being willing to share it — after all, the IoT’s all about collaboration! 


*we’ll let them off with a warning from the Grammar Police this time. However, please, no more management babble in the future, OK?

 

IoT for Gamechangers: Talkin’ Smart Cities

Pope Francis wasn’t the only one speaking truth to power at 10 AM this morning: I was a guest again on SAP’s “Coffee Break With Game Changers” (you can catch a rebroadcast in a few hours), talking with hostess Bonnie Graham and SAP’s Ira Berk about smart cities.

Having just read the great bio of Elon Musk, I contrasted the top-down, I-gotta-sign-off-on-every-purchase-over-$10,000 style of Musk (and Steve Jobs, for that matter) with the out-of-control (in the best sense of the term!), bottoms-up approach needed in gigantic, complex, ever-changing cities (blogged on this earlier this week) to make them “smart.” IMHO, smart cities will evolve from a wide range of small, incremental changes, both public and private.

One of my favorite examples that I mentioned was announced today by Mayor Marty Walsh here in the Home of the Bean and the Cod.  The city has already been partnering with Waze for months: it informs Waze of any planned road work and detours, and, in return, Waze gives the city its real-time data to respond to traffic jams. Today the mayor announced that bike-riding Traffic Enforcement Officers will be able to swoop in on double-parking miscreants using Waze data.  Oh yeah, there’s another party to this collaboration: you and I, who make Waze work by reporting traffic and obstacles that we encounter while driving the city’s streets. Perfect example of my IoT “Essential Truth” that we must share data.

There was a lot more on the show: hope you can tune in!

BTW: when Bonnie asked at the end of the show if we’d dust off our crystal balls and predict how the IoT will make smart cities by 2020 — I stuck my neck out and said it would much quicker for the reasons I cited in the above-mentioned post on smart cities, especially the free citywide IoT data network movement spearheaded by Amsterdam.  If you’re in Greater Boston and would like to be in the vanguard of this movement, meet us next Wednesday night at the kewl new InTeahouse space in Cambridge, to plan our strategy to launch the free, citywide (including neighborhoods!) Boston IoT Data Network!

 

Free Citywide IoT Data Networks Will Catapult IoT Spread to Hyperspeed!

One of the truly exciting things about viral digital phenomena is how rapidly they can take hold, outstripping the slow, methodical spread of innovations in the pre-digital era.  I suspect we may be on the verge of that happening again, with an unlikely impetus: the crowdsourced global movement to create free citywide IoT data networks.

We’re been there before, with the movement to open real-time public access to city data bases, beginning when CTO (and later US CIO) Vivek Kundra did it in DC in 2008, then sponsored the Apps for Democracy competition to spark creation of open-source apps using the data (bear in mind this was at a time when you had to explain to many people what an “app” was, since they, and smart phones, were so new).  From the beginning, Kundra insisted that the apps be open source, so that hackers in other cities could copy and improve on them, as they have — worldwide.

I was doing consulting for him at the time, and remember how incredibly electric the early days of the open data movement were — it inspired my book Data Dynamite, and led to similar efforts in cities worldwide, which in turn set the stage for the “smart city” movement as the IoT emerged.

As detailed in my last post, we’re now launching a crowdsourced campaign to make Boston the first US city, and second worldwide (following Amsterdam) to have a free citywide IoT data network — and plan to up the ante by setting of goal to cover the neighborhoods too — not just the downtown.

The Things Network guys plan to build on their accomplishments, announcing this week that they will advise similar crowdfunded networks on five continents (including our Boston project). They place a major emphasis on grassroots development, to avoid subscription-based infrastructures that could be controlled from above and which would limit l0w-cost innovations, especially on the neighborhood scale.  According to founder Wienke Giezeman:

““If we leave this task up to big telcos, a subscription model will be enforced and we will exclude 99% of the cool use cases. Instead, let’s make it a publicly owned and free network so businesses and use cases will flourish on top of it.”

I’ve been a fan of mesh networks back to my days doing disaster and terrorism because they’re self-organizing and aren’t vulnerable because there isn’t a single point of failure. But it’s as much philosophical as technological, because you don’t have to wait for some massive central authority to install the entire system: it evolves through the decisions of individuals (we’re already finding that in Boston: it turns out that our system will be able to tap a number of LoRaWAN gateways that several companies had already installed for their own uses!) The Amsterdam guys share that perspective. Tech lead Johan Stokking says:

“We make sure the network is always controlled by its users and it cannot break at a single point. This is embedded in our network architecture and in our governance.”

Takes me back to my callow youth in the 6o’s: let a thousand apps bloom! (and, BTW, the great Kevin Kelly made this point in his wonderful Out of Control, back in the mid 90’s, especially with his New Rules for the New Economy (I’m going to take the liberty of posting all the rules here, because they are so important, especially now that we have technology such as LoRaWAN that foster them!):

1) Embrace the Swarm. As power flows away from the center, the competitive advantage belongs to those who learn how to embrace decentralized points of control.

2) Increasing Returns. As the number of connections between people and things add up, the consequences of those connections multiply out even faster, so that initial successes aren’t self-limiting, but self-feeding.

3) Plentitude, Not Scarcity. As manufacturing techniques perfect the art of making copies plentiful, value is carried by abundance, rather than scarcity, inverting traditional business propositions.

4) Follow the Free. As resource scarcity gives way to abundance, generosity begets wealth. Following the free rehearses the inevitable fall of prices, and takes advantage of the only true scarcity: human attention.

5) Feed the Web First. As networks entangle all commerce, a firm’s primary focus shifts from maximizing the firm’s value to maximizing the network’s value. Unless the net survives, the firm perishes.

6) Let Go at the Top. As innovation accelerates, abandoning the highly successful in order to escape from its eventual obsolescence becomes the most difficult and yet most essential task.

7) From Places to Spaces. As physical proximity (place) is replaced by multiple interactions with anything, anytime, anywhere (space), the opportunities for intermediaries, middlemen, and mid-size niches expand greatly.

8) No Harmony, All Flux. As turbulence and instability become the norm in business, the most effective survival stance is a constant but highly selective disruption that we call innovation.

9) Relationship Tech. As the soft trumps the hard, the most powerful technologies are those that enhance, amplify, extend, augment, distill, recall, expand, and develop soft relationships of all types.

10) Opportunities Before Efficiencies. As fortunes are made by training machines to be ever more efficient, there is yet far greater wealth to be had by unleashing the inefficient discovery and creation of new opportunities.”

If you really want to exploit the IoT’s full potential, you gotta read the whole book.

Equally important, the Obama Administration announced it will boost smart city app development with a new $160 million smart cities initiative:

“Among the initiative’s goals are helping local communities tackle key challenge such as reducing traffic congestion, fighting crime, fostering economic growth, managing the effects of a changing climate, and improving the delivery of city services. As part of the initiative, the National Science Foundation will make more than $35 million in new grants and the National Institute of Standards and Technology will invest more than $10 million to help build a research infrastructure to develop applications and technology that ‘smart cities’ can use.”

The LoRaWan gateways used in the Amsterdam project are already low cost: only 10 of the $1,200 units covered the downtown area. However, The Things Network hopes to crowdsource an even cheaper, $200 version through a Kickstarter campaign.  If that happens, even small cities will be able to have their own free citywide IoT data networks, and when that happens, I’m confident the IoT will shift into hyperdrive worldwide!

Are you on board?


 

Oh yeah, did you say what about the risks of privacy and security violations with such a large and open system? The Amsterdam lads have thought of that as well, reaching out to Deloitte from the get-go to design in security:

“To make this initiative grow exponentially, we have to take cyber security and privacy into account from the start of the development. Therefore, we have partnered with Deloitte, who is not only contributing to the network with a Gateway, but will also be the advisor on the security and privacy of the network.

“’We translate technology developments in the field of Digital, Data and Cyber Security into opportunities and solutions for our clients. We are therefore happy to support the Things Network as Security & Privacy advisor’ Marko van Zwam, Head of Deloitte Cyber Risk Services.”

Boston Crowdsourced Campaign to Give City 1st Citywide Free IoT Data Network in US

You’ll remember I got quite excited while blogging the new citywide free IoT data network in Amsterdam, and decided on the spot to make Boston the first US city with such a network.  Here’s our release!

Crowdsourced Campaign to Create Free Citywide IoT-Data Network in Boston
would be first city in US to share Internet of Things’ benefits citywide

(Boston, September 21, 2018) — A crowdsourced campaign will make Boston the first US city with a free, citywide Internet of Things (IoT) data network, facilitating entrepreneurial, municipal, and neighborhood innovations in everything from traffic reduction to public health.

The Boston campaign is based on one in Amsterdam that built a similar network in a month (although not penetrating all neighborho0ds), and activists there are helping the Boston effort. While being built, the Amsterdam system already spawned uses such as a water detector to canal boat owner a text that a boat is filling with water and a system for the Port of Amsterdam using sensors to create real-time information to help manage boat traffic more efficiently. The campaign complements opening of the INEX IoT Impact Lab in New Bedford, President Obama’s $160 million fund for “smart cities” projects, and the Amsterdam group’s effort to spread the approach to 5 continents.

The network will use new LoRaWAN gateways, which  let things exchange data without 3G or Wi-Fi, and feature low battery usage and a range of up to 7 miles.  Several companies have already donated units to the Boston campaign before the launch.

According to IoT thought leader W. David Stephenson of Stephenson Strategies, who also founded the 1,500 member Boston IoT Meetup (which will form the core of the crowd-sourced campaign), “We hope to gain wide public and private support because this will not only spark profitable innovation, but also other efforts that will make Boston, especially the neighborhoods, a better place to live. Think of what your companies — and the city as a whole — could do if we had such a network: the entire city of Boston would become an IoT lab/sandbox, encouraging incredible innovation in use of IoT. But we must move quickly if we are to be the first US city with such a network.”

IoT entrepreneur Chris Rezendes of INEX Advisors, co-chair of the IoT Meetup and creator of the New Bedford IoT Impact Lab, said “the IoT will prove its real value when people and companies can see the tangible results improving their daily lives and corporate efficiency. From New Bedford to Boston, we’re a world leader in making the IoT a tangible reality for companies and cities alike.”

Wish us luck: if we’re successful, look forward to working with The Things Network to spread the concept worldwide — the sooner the better!

http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management