Live-blogging @ Wearables + Things

 

Just arrived @ Wearables + Things conference (I’ll speak on “Smart Aging” tomorrow). Hmm: there’s one noteworthy player absent from the conference: those guys from Cupertino. Wonder why they’re not there (perhaps in stealth mode??)

Conference already underway, about to have 2 new product reveals!

  1. iStrategyLabs, “Dorothy,” connects your shoe to your phone. You’re stuck in a conversation, need way to leave. What if you could click your heels together three times (get it, Dorothy???) and you’d get a bail-out call (or you can trigger an IFTTT recipe or call for a pizza…). “Ruby” goes in shoe.  OK, this ain’t as significant as either the Lechal haptic shoe, but who knows how it might evolve…
  2. Atlas Wearables’ fitness product, Atlas. Their goals is seamless, frictionless experiences. “What if device could recognize specific motions you’re making?” This is really cool: it recognizes and records a wide range of fitness activities, such as push-ups.  I really don’t like fact that my Jawbone can’t do that, so this looks good!

Sony Mobile, Kristian Tarnhed. Challenges:

  1. g data overload. They have a “lifelog” app that tries to make sense of all the data.
  2. too many devices that want your attention. Make them complement smart phone as much as possible.
  3. is it really wearable, usable? 

Very funny: no one mentions Apple. 10-ton gorilla in the room????


Amazing preso by Jim McKeeth: “Is Thought the Future of Wearable Input?”  Guy wearing Google Glass is controlling a drone! Wouldn’t that be an incredible thing for “Smart Aging”  to allow a frail elder to control various household things just by thinking them?


 

Oren Michels, chief strategist, Intel (he was an API pioneer at Mashery):

  • APIs make connections. The Epocrates platform from Athena Health is an example: may save $3.5B.
  • Also working in travel. Example is Sabre, which has switched to an open API.
  • APIs create better customer experiences: Apple Pay! 30% of Starbucks revenue from its phone purchase app.

Quick time to market: Coke was able to restock vending machines instantly during 2012 Olympics through API.

  • Examples:
    • better healthcare monitoring: give small devices processing power through cloud
    • connected car ecosystem (BMW iConnected Services, MyCityWay, TomTom’s WebFleet)
    • Snapshot from Progressive
    • Inrix — “data for planning smart cities”

This, IMHO, is sooo important: open APIs are great example of my Essential Truth of “who else can use this data?” — you don’t have to develop every kewl use for your device yourself: open the API and others will help!


Peter Li, Atlas Wearables (the company that debuted their new device yesterday):

  • iPhone: remember, it was a 3-in-one solution.
  • sensors now commoditized: cheap & tiny
  • he was a biomedical engineer
  • synergistic benefits by combining data streams
  • era of augmentation: making you better without you having to think about it.
  • frictionless actions

“sensors root of the revolution”


Brad Wilkins, Nike science director:

  • he’s exercise physiologist
  • they have whole detailed process to understand physiological phenomena. Role of sensor is the describe the phenomena. Then apply that data to enhance athlete potential

Noble Ackerson, Lynxfit, “Hacking Your Way Through Rehab With Wearables”

  • they let content publishers (they work with Stanford Health, UnderArmour, etc.) in rehab area to push info to devices. Prescribe workouts.  Device agnostic.
  • They’ve imported 65 different activities into program.
  • Track: heart rate, pace, position, speed, endurance, breathing, sentiment.

Panel: Jim Kohlenberger, JK Strategies; Jose Garcia, Samsung; Mark Hanson, BeClose; Alison Remsen, Mobile Future:

  • BeClose is working with seniors!!
  • Samsung working with airports to make flying experience more enjoyable.
  • BeClose: take some of burden off health care system.
  • how government can help: faster networks. “First, do no harm.” — Digital Hypocratic Oath.

DHS (sorry, didn’t get his name):

  • In a crisis,  “data  must inform at the speed of thought” Brilliant
  • To be operational, data must be intuitive, instinctive, interoperable, and wearable.
  • Creating “Next Generation First Responder”
  • Creating fire jackets with sensors built in.

Proximity-aware apps using iBeacon:

  • beacons are Bluetooth v4.0 Low Energy transmitters.
  • mobiles can identify and determine proximity to beacon: usual range is 25 to 40 m, but you can tune it to much shorter range.
  • beacons broadcast unique identifier for the place. Also provide Measured Power Value: what’s signal strength of beacon at specific distance.
  • the beacon only sends out a unique identifier, which triggers the app contains all the info that drives the experience.
  • app is notified whether you’re in immediate range, near, or far range (might even want to present content when person exits the area).
  • beacons protect privacy by being opt-in. They are transmit only: don’t receive or collect signals from mobile devices.
  • Apple requires that the app specifically ask user to allow proximity-aware mobile app to access their location.
  • non iBeacon versions: AltBeacon (Radius Network’s opsolves en source alternative), and other ones that specific companies will introduce, optimized for their products.
  • Radius multi-beacon: solves fragmentation problem or multiple, incompatible beacon ad types. Their RadBeacons handle both types.
  • RadBeacon: USB powered, coin-cell battery powered, AA battery powered.  Most beacons will only last about a month before battery change.
  • Future of beacons: will be split in market: corporate (one of their questions has rolled out more than 16,000 — they won’t powered or long-battery-life versions & remote monitoring) vs. consumers (cheap & disposable). Will be integrated into equipment (wifi access-point hotspots, POS terminals, fuel dispensers, self-service kiosks.

My presentation about “Smart Aging”


 

Privacy & Security Panel:

  • There is real risk of personal data being intercepted. “No perfect solutions.”
  • Data can be stored on smart phone OR uploaded to cloud. What control does user have? What if you have health wearable that sends info on blood pressure, etc., to cloud, where it gets shared with companies, and, for example, it can link data to your Facebook data, could be risk of disclosure.
  • HIPPA and variety of other regulations can come into play.
  • Things moving very quickly, data captured & used. Example of Jawbone data from people who were sleeping during California quake: users upset because the data was disclosed to news media — even though it was just aggregated, was creepy!
  • FTC went after the Android flashlight app that was aggregating data. A no-no.
  • have to make it simple to understand in statements about how your data will be collected & used.
  • Tiles: if the device is gone from home, will send alert to ALL Tile devices. You might be able to modify the software so you (bad guy) could retrieve it it while the owner would think it was still lost.  Stalker might even be able to use this data..

Scott Amyx, Amyx & McKinsey,  “The Internet of Things Will Disrupt Everything”:

  • Example of McLean, the developer of intermodal shipping container. Hmm: does Amyx know about how Freight Farms has created IoT-enhanced food growing in freight containers???
  • future of M2M will allow sensors with embedded processors — smarter than today’s computers.
  • memory: over time, memory will only grow.
  • wifi: most locked networks are idle most of day. Harness them.
  • lifi: 2-way network to turn any light as a network. Higher-speed than wifi.
  • mesh networks (long-time fascination of mine, especially in disasters): every node creates more powerful network. Can’t be controlled by a central gov.
  • Implications:
    • can disrupt telecom (mesh networks)
    • shifting consumer data from cloud to you
  • they’re testing a system that would tell what a person really feels while they’re in store, film companies can test from pilot whether people will really like it. Creepy??
  • working with Element to bring this to fashion show: would gauge reaction.
  • IoT won’t be great leap, but gradual trend (like my argument that companies should begin with IoT by using it to optimize current manufacturing).
  • incredible vision of how you’ll drive to a biz appt. in driverless car, you’ll get briefing on the meeting from your windshield.
  • opportunities at every stage of the IoT development shift.

GE & Accenture provide detailed picture of current IoT strategy & deployment

I’ll admit it: until I began writing the “Managing the Internet of Things Revolution” guide to Internet of Things strategy for SAP, I was pre-occupied with the IoT’s gee-wiz potential for radical transformation: self-driving cars, medical care in which patients would be full partners with their doctors, products that customers would be able to customize after purchase.

GE_Accenture_IoT_reportThen I came to realize that this potential for revolution might be encouraging executives to hold off until the IoT was fully-developed, and, in the process, ignoring low-hanging fruit: a wide range of ways that the IoT could dramatically increase the efficiency of current operations, giving them a chance to experiment with limited, less-expensive IoT projects that would pay off rapidly and give them the confidence and understanding necessary to launch more dramatic IoT projects in the near future.

This is crucially important for IoT strategies: instead waiting for a radical transformation (which can be scary), view it instead as a continuum, beginning with small, relatively-low cost steps which will feed back into more dramatic steps for the future.

Now, there’s a great new study, “Industrial Internet Insights Report for 2015,” from GE and Accenture, that documents many companies are in the early stages of implementing such an incremental approach, with special emphasis on the necessary first step, launching Big Data analytics — and that they are already realizing tangible benefits. It is drawn from a survey of companies in the US, China, India, France, Germany, the UK, and South Africa.

The report is important, so I’ll review it at length.

Understandably, it was skewed toward the industries where GE applies its flavor of the IoT (the “Industrial Internet”): aviation, health care, transportation, power generation, manufacturing, and mining, but I suspect the findings also apply to other segments of the economy.

The summary underscores a “sense of urgency” to launch IoT initiatives:

“The vast majority (of respondents) believe that Big Data analytics has the power to dramatically alter the competitive landscape of industries just within the next year, and are investing accordingly…” (my emphasis).

84% said Big Data analytics “has the power to shift the competitive landscape for my industry” within just the next year, and 93% said they feared new competitors will enter the field to leverage data.  Wow: talk about short-term priorities!

It’s clear the authors believe the transformation will begin with Big Data initiatives, which, IMHO, companies should be starting anyways to better analyze the growing volume of data from conventional sources. 73% of the companies already are investing more than 20% of their overall tech budget on Big Data analytics — and some spend more than 30%! 80 to 90% said Big Data analytics was either the company’s top priority or at least in the top 3.

One eye-opening finding was that 53% of respondents said their board of directors was pushing the IoT initiatives. Probably makes sense, in that boards are expected to provide necessary perspective on the company’s long-term health.

GE and Accenture present a  4-step process to capitalize on the IoT:

  1. Start with the exponential growth in data volumes
  2. Add the additional data volume from the IoT
  3. Add growing analytics capability
  4. and, to add urgency, factor in “the context of industries where equipment itself or patient outcomes are at the heart of the business” where the ability to monitor equipment or monitor patient services can have significant economic impact and in some cases literally save lives [nothing like throwing the fear of God into the mix to motivate skeptics!].
For many companies, after implementing Big Data software, the next step toward realizing immediate IoT benefits is by installing sensors to monitor the status of operating assets and be able to implement “predictive maintenance,” which cuts downtime and reduces maintenance costs (the report cites some impressive statistics: ” .. saving up to 12 percent over scheduled repairs, reducing overall maintenance costs up to 30 percent, and eliminating breakdowns up to 70 percent.” What company, no matter what their stance on the IoT, wouldn’t want to enjoy those benefits?). The report cites companies in health care, energy and transportation that are already realizing benefits in this area.
Music to my ears was the emphasis on breaking down data-sharing barriers between departments, the first time I’ve seen substantiation of my IoT “Essential Truth” that, instead of hoarding data — whether between the company and supply-chain partners or within the company itself — that the IoT requires asking “who else can use this data?” It said that: “System barriers between departments prevent collection and correlation of data for maximum impact.” (my emphasis). The report went on to say:

“All in all, only about one-third of companies (36 percent) have adopted Big Data analytics across the enterprise. More prevalent are initiatives in a single operations area (16 percent) or in multiple but disparate areas (47 percent)…. The lack of an enterprise-wide analytics vision and operating model often results in pockets of unconnected analytics capabilities, redundant initiatives and, perhaps most important, limited returns on analytics investments.”

Most of the companies surveyed are moving toward centralization of data management to break down the silos. 49% plan to appoint a chief analytics officer to run the operation, and most will hire skilled data analysts or partner with outside experts (insert Accenture here, LOL…).

The GE/Accenture report also stressed that companies hoping to profit from the IoT also must create end-to-end security. Do do that, it recommended a strategy including:
  1. assess risks and consequences
  2. develop objectives and goals
  3. enforce security throughout the supply chain.
  4. use mitigation devices specifically designed for Industrial Control Systems
  5. establish strong corporate buy-in and governance.

For the longer term, the report also mentioned a consistent theme of mine, that companies must begin to think about dramatic new business models, such as substituting value-added services instead of traditional sales of products such as jet engines.  This is a big emphasis with GE.  It also emphasizes another issue I’ve stressed in the “Essential Truths,” i.e. partnering, as the mighty GE has done with startups Quirky and Electric Imp:

“Think of the partnering taking place among farm equipment, fertilizer, and seed companies and weather services, and the suppliers needed to provide IT, telecom, sensors, analytics and other products and services. Ask: ‘Which companies are also trying to reach my customers and my customers’ customers? What other products and services will talk to mine, and who will make, operate and service them? What capabilities and information does my company have that they need? How can we use this ecosystem to extend the reach and scope of our products and services through the Industrial Internet?'”

While the GE/Accenture report dwelt only on large corporations, I suspect that many of the same findings would apply to small-to-medium businesses as well, and that the falling prices of sensors and IoT platforms will mean more smart companies in this category will begin to launch incremental IoT strategies to first optimize their current operations and then make more radical changes.

Read it, or be left in the dust!


PS: as an added bonus, the report includes a link to the GE “Industrial Internet Evaluator,” a neat tool I hadn’t seen before. It invites readers to “see how others in your field are leveraging Big Data analytics for connecting assets, monitoring, analyzing, predicting and optimizing for business success.” Check it out!

Apple Watch: killer app for IoT and lynchpin for “smart aging”

Wow: glad I put up with all of the tech problems during the Apple product launch today: the Apple Watch was worth it! It really seems as if it will be the killer device/app for the Internet of Things consumer market, and I think it may also be the lynchpin for my vision of “smart aging,” which would link both wearable health devices and smart home devices.

The elegant, versatile displays (it remains to be seen how easy it will be for klutzes like me to use the Digital Crown and some of the other navigation tools) plus the previously announced Health and Home Apps that are part of iOS 8 could really be the glue that brings together Quantified Self and smart home devices, making “smart aging” possible.

Activity AppIt will take some time to learn all about the watch and to see what apps the “Watch Kit” spawns, but here are some immediate reactions:

  • sorry, but I think it could kill the Lechal haptic shoes before they get off the ground: why have to pay extra for shoes that will vibrate to tell you where to go when your watch can do the same thing with its “Taptic Engine”?
  • I think I’ll also ditch my Jawbone UP, as much as I love it, for the Apple Watch: the video on how the Activity and Workout apps will work makes it look incredibly simple to view your fitness data instantly, vs. having to open an app on your phone.
  • (Just dreaming here): if they can pull off that neat “Milanese Loop” band on one of the versions that clamps to itself, what about not just a heart beat monitor, but a band that converts into a blood-pressure cuff? Guess that wouldn’t be accurate on the wrist, anyway, huh?

Why It’s So Hard to Predict Internet of Things’ Full Impact: “Collective Blindness”

I’ve been trying to come up with a layman’s analogy to use in explaining to skeptical executives about how dramatic the Internet of Things’ impact will be on every aspect of business and our lives, and why, if anything, it will be even more dramatic than experts’ predictions so far (see Postscapes‘ roundup of the projections).

See whether you thing “Collective Blindness” does justice to the potential for change?

 

What if there was a universal malady known as Collective Blindness, whose symptoms were that we humans simply could not see much of what was in the world?

Even worse, because everyone suffered from the condition, we wouldn’t even be aware of it as a problem, so no one would research how to end it. Instead, for millennia we’d just come up with coping mechanisms to work around the problem.

Collective Blindness would be a stupendous obstacle to full realization of a whole range of human activities (but, of course, we couldn’t quantify the problem’s impact because we weren’t even aware that it existed).

Collective Blindness has been a reality, because vast areas of our daily reality have been unknowable in the past, to the extent that we have just accepted it as a condition of reality.

Consider how Collective Blindness has limited our business horizons.

We couldn’t tell when a key piece of machinery was going to fail because of metal fatigue.

We couldn’t tell how efficiently an entire assembly line was operating, or how to fully optimize its performance.

We couldn’t tell whether a delivery truck would be stuck in traffic.

We couldn’t tell exactly when we’d need a parts shipment from a supplier, nor would the supplier know exactly when to do a new production run to be read.

We couldn’t tell how customers actually used our products.

That’s all changing now. Collective Blindness is ending, …. and will be eradified by the Internet of Things.

What do you think? Useful analogy?

Wearables: love these new shoes that tell you where to go!

Wow! What if you were blind, and instead of a white cane, your shoes gave you directions? Or, even for people with no disabilities, you were navigating a strange city, and instead of having to constantly check Google Maps, your shoes showed the way? Pretty neat!

Lechal sensor shoe

Check out the snazzy new Lechal shoe from India’s Ducere Technologies.

The shoe, also available as an insert that can go in your own plain-vanilla shoes, was invented by two young US-educated Indian entrepreneurs, Krispian Lawrence and Anirudh Sharma, who had a vision (ooops!) of using technology to help the visually impaired.

It’s billed as the “world’s first interactive haptic footware” (bet your mom would be shocked if she knew you were wearing haptic footware, eh?).  When synched to the Lechal smartphone app, it vibrates to tell you which way to go.

And the water-resistant, breathable and anti-bacterial shoes have other features: “For those with 20/20 vision or near they are still useful – they can also calculate routes, steps taken, distance covered and calories burn to monitor workouts.”

I can see these as a critical tool for seniors as part of my “smart aging” paradigm as well, especially for those with dementia or Alzheimers.

As with other Quantified Self devices, you can share your walking and other data with friends via the device.

Here’s a cool feature: it claims to have the “world’s first interactive charger”: it gives audio feedback if you snap your fingers, and beeps to tell you the progress of charging, and the charger can be used as a fast charger for most phones, cutting down on the number of chargers you have to ride herd on.

Oh, BTW, Ducere gets extra points in my book because they don’t take themselves too seriously. To wit, “The technology that powers the shoe is embedded in its sole (pun intended).”

Wearables/fitness apps & devices market heats up with Google Fit pending launch

Google appears set to give Apple’s pending Health app a run for its money with the forthcoming launch of the Google Fit tools. The competition should really benefit consumers and health care (Google has already released the developer’s kit). In announcing the kit, Google said the new tools will provide:

“… a single set of APIs for apps and device manufacturers to store and access activity data from fitness apps and sensors on Android and other devices (like wearables, heart rate monitors or connected scales). This means that with the user’s permission, you can get access to the user’s fitness history — enabling you to provide more interesting features in your app like personalized coaching, better insights, fitness recommendations and more.”

The releases only cover local storage of data, with cloud storage to follow.  As Forbes notes, that’s where the competition with Apple will be fierce:

Google Fit will integrate with a number of solutions from Google. Your Android powered smartphone or tablet is the obvious first point of contact, but you should also consider Google Fit’s potential integration with Google Glass and the Android Wear smartwatch program. All of these devices can use their sensor suite to gather and relay health data.”

As with Apple Health, Google wants developers and device manufacturers to settle on its standard as the hub for collection and integration of health and fitness data, while it may not be in the individual company’s best interests to commit to a single proprietary standard. As Forbes‘ Ewan Spence predicted, it’s unlikely that any end users are going to change platforms for their devices just because of new health apps and devices.

I guess it would be inappropriate to refer to any potential “killer apps” that could sway anyone in this category, eh?

comments: 1 » tags: , , , ,

Internet of Things interview I did with Jordan Rich

Didn’t realize this had run several weeks ago, but here’s an introduction to the IoT (based on my SAP “Managing the Internet of Things” i-guide) that I did with Jordan Rich of WBZ Radio, who’s also my voice-over mentor.  The examples include the GE Durathon battery plant, “smart aging,” Shodan, the SAP prototype smart vending machine and Ivee. Enjoy!

comments: 0 » tags: , , , ,

Detailing my “Smart Aging” through the IoT vision

The best-laid plans get canceled due to Summer vacation…

I was supposed to speak to seniors (and those who love or care for them!) today in my dear little burg, Medfield, MA, about my “Smart Aging” through the IoT vision. However, the talk has been postponed til September due to the small number of sign-ups. Oh well, I guess most revolutions start with a whimper, not a bang.

Because I believe so strongly in the idea, I’ve posted the talk (including presenter’s notes) to SlideShare.

Basically, it fleshes out what I’ve written in a number of recent posts, that I believe we can and must meld two aspects of the IoT, Quantified Self wearable devices that measure and record personal health and wellness data 24/7 and smart home devices such as the Nest thermostat and Ivee voice-activated base station, to create a new approach to aging. I defined smart aging as:

using senior-friendly home and health technology to cut your health and living costs,
improve your health and quality of life, and keep you in your own home as long as possible.

I predicted that it can “bring unprecedented health and happiness to our senior years — while saving us  money!”

While there have been efforts for a while to specifically use technology to improve aging, I predicted that

“Smart Aging will instead result from tweaking efforts underway as part of the Internet of Things to improve life for everyone, of all ages. As Joe Coughlin, director of MIT’s AgeLab, says, ‘Counterintuitively, making home automation mainstream and cool means that it’s likely to end up in the hands of older adults sooner than if home automation technologies were only designed specifically for older people.’”

(that’s why I suspect that wearables such as the Nike Fuel or prototype MC10 for jocks will be more important for seniors than anything specifically designed for them — and will face fewer obstacles to adoption).

I stressed that there are still important obstacles, not only the security and privacy ones that are essential for ANY IoT product or service, but also some that are specific to seniors, such as preserving their dignity and letting them control who will share access to their data.

I concluded that this approach will pay multiple benefits:

  • Improve your health & fitness
  • Cut your medical bills
  • Build your self-esteem
  • Cut your living costs
  • Let you stay at home, safely.

I’d love to hear your thoughts on this subject.

Will sports-star wearables make them cool enough for general public?

OK, first an admission of guilt: I don’t synch my Jawbone UP every day (although now that my wife and I are sharing results and challenging each other, that’s subject to change).  Evidently, I’m not alone: I read stats somewhere (can’t remember the source) that about 40-50% of all Quantified Self device users stop using them within the first six months.

But that’s not the big problem: that’s the fact that only a very small percentage of the population ever uses the devices at all, despite their benefits for health and fitness.

Part of the answer, IMHO, is making them sooo simple to use that you’d automatically use them (for example, I like the fact that the Lose It! app nags me every day if I haven’t entered my diet, activity, or weight), but the other factor is creating a cool factor about wearables. I read recently about a VC in Silicon Valley who always wears her Jawbone to cocktail parties because it starts conversations, but Silicon Valley VCs aren’t generally regarded as celebrities in the heartland, so I’m thinking more about sports stars.

biostamp

Now there’s a Boston-area startup, MC10, that might just make that breakthrough.  According to The Boston Globe, the company has a number of 1st-rank sports luminaries as investors/advisors, including former NBA star Grant Hill, hoop coach John Thompson III,  Indianapolis Colts quarterbacks Andrew Luck and Matt Hasselbeck, soccer star Kristine Lilly, and four-time Olympic women’s ice hockey medalist Angela Ruggiero.

The company’s first product is the translucent, stick-on Biostamp, due to be released next year. “The device, a barely visible 2-square-inch patch, is designed to stick on any body part like a second skin and record biometric data from heart rate and hydration levels to muscle activity and sleep patterns.”  It’s likely to replace the current, bulky and obtrusive devices for serious athletes. 

According to The Globe, there is about a dozen companies developing similar devices for jocks.

I’ve got a big collection of ball caps (primarily those of The Team That Shall Not Be Mentioned This Year, the one that “plays” [as it were…] @ Fenway Park), and an equal number of T’s from the same guys. Obviously, fans love to bond with their fav jocks by wearing their apparel, so I’m wondering whether the advent of Biostamps and similar devices will lead to fan apparel with similar devices built in, as worn by their favorites (hmmm: somehow I can’t see comparing my caloric intake with Big Papi …).

I see a lot of guys and gals around Boston with gray hair wearing the same gear, so I suspect the same approach might be a more productive way to get seniors to wear such devices than to design ones specifically for them.

This niche bears watching!

 

The New IoT Math: 1 + 1 + 3 — Jawbone UP24 now controls Nest thermostat

A chance conversation about the IoT the other day turned me on to this elegant proof-of-concept that what I call “Smart Aging” to help seniors be healthier and avoid institutionalization is possible: my Jawbone UP bracelet could now control my Nest thermostat (if I had one: with three heating zones in my house, I’m gonna wait until the NEST price drops before I’ll buy them…).

That, ladies and gentlemen, is exactly what I’m talking about with my concept of “Smart Aging” for seniors, which would combine:

  • Quantified Self devices such as Jawbone UPs, Nike FuelBand, the congestive heart failure necklace,  or the Biostamp sensor (more about that one in a future post!) that will easily and unobtrusively monitor your bodily indicators and, if you choose, report them to your doctor, both to improve diagnoses, and to encourage you to adopt healthy practices such as a daily walk.
  • smart home devices such as the NEST or the voice-activated Ivee hub.

Even better, if device manufacturers get it about one of my Essential Truths about the IoT:  who else could use this data?, they will allow free access to their algorithms, and someone will realize that 1+1=3: the two devices are even more powerful when linked! In this case, the Jawbone UP is powerful, and so is the Nest, but something totally new is possible when they are linked:

“By connecting your UP24 with your Nest Thermostat, the temperature of your house will automatically adjust to a temperature you prefer – the moment you go to bed or wake up.

“Through UP Insights, we have shared the fact that an ideal sleeping environment is cooler, between 65 and 72 degrees. With the Nest integration, we no longer just tell you this fact. We make it a reality. Once your band enters Sleep Mode, your thermostat will kick down to your ideal temperature. And when you wake? You guessed it. Your thermostat will automatically adjust to a warmer temperature… all without leaving your bed.”

Nest-2_thermostatJawbone_UpHow cool (or hot, depending on the season…) is that?

I particularly like it for seniors because of one UP feature: instead of setting a precise wake-up alarm, you also have the option of creating a 30-minute window when it it should vibrate to wake you, with the exact time determined by what the UP determines is the ideal point in your natural sleep cycle.  Some working people on extremely tight morning schedules may not want to take advantage of that option, but for seniors, answering to no one but themselves, that would be an added benefit: get the best possible sleep, AND get up in a warm house (oh, and while you’re at it, why not link in some Phillips HUE lights and a coffee pot plugged in to a Belkin WeMo socket, so that you’ll also have fresh-brewed coffee and a bright kitchen?).  Sweet!

Do the math: one IoT-empowered device is nice, but link several more of them, and 1 + 1 = 3 — or more!