ThingWorx Analytics Video: microcosm of why IoT is so transformative!

I’ll speak at PTC’s LiveWorx lollapalooza later this month (ooh: act quickly and I can get you a $300 registration discount: use code EDUCATE300) on my IoT-based Circular Company meme, so I’ve been devouring everything I can about ThingWorx to prepare.

Came across a nifty 6:09 vid about one component of ThingWorx, its Analytics feature. It seems to me this video sez it all about both how you can both launch an incremental IoT strategy (a recent focus of mine, given my webinar with Mendix) that will begin to pay immediate benefits and can serve as the basis for more ambitious transformation later, especially because you’ll already have the analytical tools such as ThingWorx Analytics already installed.

What caught my eye was that Flowserve, the pump giant involved in this case, could retrofit existing pumps with retrofit sensors from National Instruments — crucial for two reasons:

  • you may have major investments in existing, durable machinery: hard to justify scrapping it just to take advantage of the IoT
  • relatively few high-end, high-cost machinery and devices have been redesigned from the ground up to incorporate IoT monitoring and operations.

Note the screen grab: each of these sensors takes 30,000 readings per second. How’s that for real-time data?  PTC refers to this as part of the “volume, velocity and variety challenge of data” with the IoT.

As a microcosm of the IoT’s benefits, this example shows how easy it is to use those massive amounts of data and how they can be used to improve understanding and performance.

There are three major components:

  • ThingWatcher:
    This is the most critical component, because it sifts through the incredible amount of data from the edge, learns what constitutes normal performance for that sensor (creating “pop-up learning flags”), and then monitors it future performance for anomalies and, as the sample video shows, delivers real-time alerts to users (without requiring human monitoring) so they can make adjustments and/or order repairs.  Finds anomalies from edge devices in real-time. Automatically observes and learns the normal state pattern for every device or sensor. It then monitors each for anomalies and delivers re- al-time alerts to end users.
  • ThingPredictor:
    For the all-important new function of predictive maintenance, two different types of ThingPredictor indicators pop up when if anomalies are detected, predicting how long it may be until failure, allowing plenty of time for less-costly, anticipatory repairs. Because the specific deviation is identified in advance, repair crews will have the needed part with them when needed, rather than having to make an additional trip back to pick up parts.

    If you ask for a standard predictive scoring you don’t specify which performance features to include and get a simple predictive score. However, you can specify several key features to evaluate and get a more detailed (and probably more helpful) answer. For example,  “if you indicate an important feature count of three, the causal scoring output will include the three most influential features for each record and the percentage weights of each feature’s influence on the score.”

  • ThingOptimizer:
    Finally, you can use “ThingOptimizer” to do some what-if calculations to decide which possible “levers,” as ThingWorx calls the key variables, could change the projections to either maximize a positive factor or minimize the negatives. “Prescriptive scoring results include both an original score (the score before any lever attributes are changed) and an optimized score (the score after optimal values are applied to the lever attributes). In addition, for each attribute identified in your data as a lever, original and optimal values are included in the prescriptive scoring results.” It sort of reminds me how the introduction of VisiCalc allowed users, for the first time, to play around with variables to see which would have the best results.
Best of all, as the video illustrates, ThingWorx Analytics would facilitate the kind of “Circular Company” I’ll address in my speech, because the exact same real-time data could simultaneously be used by operating personnel to fine tune operations and catch a problem in time for predictive maintenance, and by senior management to get an instant overview of how operations are going at all the installations. Same data, many uses.
Bottom line: a robust IoT platform could be the key to an incremental strategy to begin by improving daily operations and reducing maintenance problems, and also be the underpinning for more radical transformation as your IoT strategy becomes more advanced!  See you at LiveWorx!

Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisensehttp://www.hortidaily.com/article/31774/Hortilux-launches-Hortisense-software-suite, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

IoT Saving Lives

Posted on 15th April 2017 in health, Internet of Things, m-health

What can you do now that you couldn’t do before?

That’s a question from my friend and patron Eric Bonabeau that I’ve raised before with regard to the IoT, and it’s a worthwhile counter-weight to focusing on the steady increases in operating efficiency that incremental IoT strategies can bring about (a not-t0o-subtle plug for the webinar that I’ll do on that subject May 2nd with low-code hotshots Mendix.  Register now!). Sure, concentrate your efforts on squeezing every bit of precision you can, but don’t forget that the IoT can also really change everything.

I’m reminded of that by this piece by Kevin Ashton, who coined the “Internet of Things” name when he was working on early RFID projects at MIT.  He writes about a brilliant insight by Prof. Shwetak Patel, a MacArthur Fellow at the University Washington.  He’s a polymath whose IoT creations include  Zensi a residential energy monitoring device a low-power wireless sensor platform company called SNUPI Technologies, and WallyHome, a consumer home sensing product.

Patel was studying COPD (once called emphysema) which causes shortness of breath and coughing. 5% of the world population suffers from it, and 3 million die from COPD yearly. In the US alone it causes 3/4 million hospitalizations and is the 3rd largest cause of death.

To diagnose it, doctors use spirometers, which cost thousands of dollars, to measure air flow in and out of lungs. Most COPD sufferers don’t have access to them. Hmm. What could substitute for the spirometers? Patel realized there were actually billions of devices that could do the job: the microphones in everyone’s phones! His research group created an algorithm that calculates lung health by analyzing the sound of a person blowing into the mic.  The patient just calls a toll-free number and blows into the phone. Computers analyze the data and tell the patient the results within seconds by voice or a text message. The algorithm’s now so sophisticated that it has 95% accuracy on cellphones and landlines alike.

How cool is that?

The same Ashton piece also talks about a more prosaic medical issue that’s still crucial to patients: how to navigate hospitals. A study he cited at Emory Hospital in Atlanta documented that the problem cost them $400,000 a year, or $800 per bed, not to mention the distraction resulting when  busy staff members are interrupted t0 help patients find their way to a lab or doc’s office.

      My Way App

Specifically, the innovation Ashton cited was at my favorite hospital, Boston Children’s, where my youngest spent a lot of time as a baby & I’ve donated blood for 40 years.  Let me tell you, because Children’s is a pastiche of buildings built since 1871, it kinda resembles a rabbit warren, and, as we like to say in these parts, “you can’t get there from here.”  So the hospital now has a “My Way” app that makes it simple to navigate the maze.

The Ashton piece nicely encapsulated the IoT’s potential: from small changes that make current reality easier to literally and figuratively navigate to new innovations that can literally change your life. Sweet!

 

comments: 0 » tags: ,

Updating my “SmartAging” device design criteria

Could seniors be the ideal test group for user-friendly consumer IoT devices?

Two years ago I created a series of criteria by which to evaluate IoT devices that seniors might use (N.B., I didn’t really focus on ones specifically designed for seniors, because I have an admitted bias against devices with huge buttons or that look like mid-century period tube radios — it’s been my experience that seniors aren’t crying out to be labeled as “different.”) to improve their quality of life.

The particular emphasis was on what I called “SmartAging,” which synthesizes two aspects of the IoT:

  • Quantified Self health devices to keep seniors healthier longer and to become partners with their doctors rather than passive recipients of care, and
  • smart home devices to make it easier to run their homes, so that seniors could remain on their own as long as possible rather than entering some drab, sterile assisted-living facility (again, my bias showing…).

A lot has happened since I compiled the list. The changes have solidified my conviction that seniors, especially the less technologically minded, might be the acid test of consumer IoT user friendliness because they can’t be expected to work as hard at mastering devices, they don’t have the automatic openness of digital natives, and encounter differing degrees of reduced agility, etc. 

Also, given the current political climate, it makes sense to try to improve seniors’ lives as much as possible without requiring costly public services that are in jeopardy (I am trying to be civil here, OK?).

The most dramatic of these developments is the amazing success of Amazon’s voice-activated Echo.  I’ve praised it before as an ideal device for seniors, partially because voice is such a natural input for anyone, and particularly because it means that the tech-averse don’t have to learn about interfaces or programs, just speak! Even better, as the variety of “skills” increases, the Echo really is becoming a unified SmartAging hub: I can now control my Sensi smart thermostats and the “Ask My Buddy” skill can even call for assistance, so it works for both halves of SmartAging.  Although I haven’t tested it, I assume much of this also holds true for the Google Home.

There’s an increasing variety of other new Quantified Self devices, some of which are specifically focused on seniors, such as the GreatCall Jitterbug Smart phone, which comes with a simplified, over-size home page featuring “brain games” a la Lumosity, and an Urgent Response system (all of these features are available on an iPhone and, I assume, on Android, but must be set in Settings rather than being the default settings).

In addition, on the personal level, I convinced my Apple Store (disclaimer: I’m at the bottom of the food chain with Apple, not privy to any policies or devices under consideration, so this is just my opinion) to let me start bi-weekly classes at the local senior center on how to use Apple devices, especially the iPad. I continue to work with a lot of seniors who come into the store who are often leery of tech products.

Silver Medal!

Most directly, last month’s companywide Apple Wellness Challenge was life-changing for me.  This year the friendly competition focused on the Apple Watch (important, since a watch is a familiar form-factor to geezers). After wasting three days trying to find the app, I really got into the event because we could share results with friends to encourage (or shame, LOL) them — that really motivated me.  Bottom line: I managed to win a Silver Medal, Apple featured my experience on the event website, and, most important, I made lasting changes to my fitness regimen that I’ve sustained since then, now exercising almost an entire hour a day. I couldn’t help think afterward that the program really did show that user-friendly technology can improve seniors’ lives.

Sooo, with a few more years to think about them and more progress in devices themselves, (as well as increased sensitivity to issues such as privacy and security) here are my amended criteria for evaluating products and services for seniors. As I mentioned the first time, Erich Jacobs of OnKöl assisted with the specs):

Ease of Use

  1. Does it give you a choice of ways to interact, such as voice, text or email? Voice in particular is good for seniors who don’t want to learn about technology, just use it.
  2. Is it easy for you to program, or — if you them give your permission — does it allow someone else to do it remotely?
  3. Does it have either a large display and controls or the option to configure them through settings?
  4. Is it intuitive?
  5. Does it require hard-wired, professional installation?
  6. Is it flexible: can it be adjusted? Is it single purpose, or does it allow other devices to plug in and create synergies? Can it be a true hub for all your IoT devices?
  7. Does it complicate your life, or simplify it?
  8. Do any components require regular charging, or battery replacement?

Privacy, Security, and Control

  1. Is storage local vs. cloud or company’s servers? Is data encrypted? Anonymized?
  2. Do you feel creepy using it?
  3. Is it password-protected?
  4. Is security “baked in” or an afterthought?
  5. Can you control how, when, and where information is shared?
  6. If it is designed to allow remote monitoring by family or caregivers, can you control access by them?
  7. Will it work when the power goes out?

Affordability

  1. Are there monthly fees? If so, low or high? Long term contract required?
  2. Is there major upfront cost? If so, is that offset by its versatility and/or the contrast to getting the same services from a company?
  3. Does full functioning require accessories?

Design/UX

  1. Is it stylish, or does the design” shout” that it’s for seniors? Is it “Medical” looking?
  2. Is the operation or design babyish?
  3. Would younger people use it?
  4. Is it sturdy?
  5. Does it have “loveability” (i.e., connect with the user emotionally)? (This term was coined by David Rose in Enchanted Objects, and refers to products that are adorable or otherwise bond with the user.)

Architecture

  1. Inbound
    1. Does it support multiple protocols (eg. Bluetooth, BluetoothLE, WiFi, etc)
    2. Is the architecture open or closed?
  2. Outbound
    1. Does it support multiple protocols (eg. WiFi, Ethernet, CDMA, GSM, etc)
    2. Data path (cloud, direct, etc)
  3. Remote configuration capability (i.e., by adult child)? If so, can the user control amount of outside access?

Features and Functions

  1. Reminders
    1. Passive, acknowledge only
    2. Active dispensing (of meds)
  2. Home Monitoring
    1. Motion/Passive Activity Monitoring
    2. Environmental Alarms (Smoke, CO, Water, Temp)
    3. Intrusion Alarms (Window etc)
    4. Facilities/Infrastructure (Thermostat)
  3. Health Monitoring
    1. Vitals Collection
    2. Wearables Activity Monitoring
    3. Behavioral/Status Polling (How are you feeling today?)
    4. Behavioral Self-improvement
  4. Communications Monitoring
    1. Landline/Caller ID
      1. Identify scammers
    2. eMail and computer use
      1. Identify scammers
    3. Mobile phone use
  5. Fixed Personal Emergency Response System (PERS)
  6. Mobile Personal Emergency Response System (PERS)
  7. Fixed Fall Detection/Prediction
  8. Mobile Fall Detection/Prediction
  9. Telehealth (Video)
  10. New and Innovative Features

If you’re thinking about developing an IoT product and/or service for seniors I hope you’ll consider the SmartAging concept, and that these criteria will be helpful. If you’re looking for consulting services on design and/or implementation, get in touch!

Sound’s emerging IoT role

Could sound be a critical IoT tool?

I’d fixated in the past on a metaphor I called “Collective Blindness,” as a way to explain how difficult it used to be to get accurate, real-time data about how a whole range of things, from tractors to your body, were actually working (or not) because we had no way to penetrate the surface of these objects as they were used. As a result, we created some not-so-great work-arounds to cope with this lack of information.

Then along came the IoT, and no more collective blindness!

Now I’m belatedly learning about some exciting efforts to use another sense, sound, for the IoT.  Most prominent, of course, is Amazon’s Alexa and her buddies (BTW, when I ask Siri if she knows Alexa, her response was an elusive “this is about you, not me,” LOL), but I’ve found a variety of start-ups pursuing quite different aspects of sound. They nicely illustrate the variety of ways sound might be used.

technician using Auguscope to detect   sound irregularities in machinery

First is Augury.

What I particularly love about their device and accompanying smartphone app it is that they are just about the lowest-cost, easiest-to-use, rapid payback industrial IoT devices I can think of.

That makes them a great choice to begin an incremental approach to the IoT, testing the waters by some measures that can be implemented quickly, pay rapid bottom-line benefits and therefore may lure skeptical senior management who might then be willing to then try bolder measures   (this incremental approach was what I outlined in my Managing the Internet of Things Revolution e-guide for SAP, and I’ll be doing a webinar on the approach in April with Mendix, which makes a nifty no-code, low-code tool).

Instead of requiring built-in sensors, an Auguscope is a hand-held device that plant personnel can carry anywhere in the building it’s needed to analyze how the HVAC system is working. A magnetic sensor temporarily attaches to the machine and the data flows from the Auguscope to the cloud where it is analyzed to see if the sound is deviating from pre-recorded normal sounds, indicating maintenance is needed. Consistent with other IoT products that are marketed as services instead of sold, it uses a “Diagnostics as a Service” model, so there are no up-front costs and customers pay as they go. The company hopes that the technology will eventually be built into household appliances such as washers and dryers.

Presenso is the second company using sound to enable predictive maintenance.  It is sophisticated cloud-based software that takes data from a wide range of already-installed sensors and interprets any kind of data: sound, temperature, voltage, etc.  It builds a model of the machine’s normal operating data and then creates visualizations when the data varies from the norm. Presenso’s power comes from combining artificial intelligence and big data.

Finally, and most creative is Chirp (hmm: Chrome wouldn’t let me enter their site, which it said was insecure. Here’s the URL:www.chirp.io/ — try at your own risk…) , a UK company that transmits data using audio clips that really sound like chirps. It’s amazing!  Check out this video of an app in India that uses sound to pay fares on the country’s version of Uber:


Another Chirp app is a godsend to all who forget Wi-Fi passwords: your phone “chirps” a secure access code, allowing you to join the network automatically.   The company has released iOS and Android versions.  As VentureBeat reported:

“Each chirp lasts a couple of seconds, and the receiving device “listens” for a handful of notes played quickly in a certain order, in a certain range, and at a certain speed. While there are other easy ways of sharing files and data in real-time, such as Bluetooth, Chirp doesn’t require devices to pair in advance, there is no need to set up an account, and it’s ultimately a much quicker way of sharing files.

“That said, with Chirp, the file itself isn’t sent peer-to-peer, and the data doesn’t actually travel directly via audio. Chirp merely decodes and encodes the file, with the associated sound serving as the delivery mechanism. A link is generated for the recipient(s) to access it on Chirp’s servers, but the process from sending to receiving is seamless and near-instant.”

In terms of IoT applications, it could also connect with physical objects (hmm: retailing uses??). The Chirp platform is so cool that I suspect it will be a global hit (the company says it’s already used in 90 countries).

So, I’ve had my senses opened: from now on, I’ll add voice and sound in general to the list of cool IoT attributes.  Because voice and sound are so ubiquitous, they really meet the late Mark Weiser’s test:  “the most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” What could be more woven into the fabric of everyday life than sound — and, potentially, more valuable?


BTW: let me put in a plug for another IoT voice product. During the past two months, I recorded 7 hours of my voice speaking a very strange mishmash of sentences drawn from, among others, Little Women, Jack London’s Call of the Wild, The Wizard of Oz, and The Velveteen Rabbit (I worried about the she-wolf sneaking up on Meg, LOL….). Using the algorithms developed for Alexa, the Vocal ID team will slice and dice my voice and create a natural sounding one for someone who cannot speak due to a birth defect or disease.  I hope you’ll join me in volunteering for this wonderful program.

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”

Yikes!

Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.

 

More Blockchain Synergies With IoT: Supply Chain Optimization

The more I learn about blockchain’s possible uses — this time for supply chains — the more convinced I am that it is absolutely essential to full development of the IoT’s potential.

I recently raved about blockchain’s potential to perhaps solve the IoT’s growing security and privacy challenges. Since then, I’ve discovered that it can also further streamline and optimize the supply chain, another step toward the precision that I think is such a hallmark of the IoT.

As I’ve written before, the ability to instantly share (something we could never do before) real-time data about your assembly line’s status, inventories, etc. with your supply chain can lead to unprecdented integration of the supply chain and factory, much of it on a M2M basis without any human intervention. It seems to me that the blockchain can be the perfect mechanism to bring about this synchronization.

A brief reminder that, paradoxically, it’s because blockchain entries (blocks) are shared, and distributed (vs. centralized) that it’s secure without using a trusted intermediary such as a bank, because no one participant can change an entry after it’s posted.

Complementing the IBM video I included in my last post on the subject, here’s one that I think succinctly summarizes blockchain’s benefits:

A recent LoadDelivered article detailed a number of the benefits from building your supply chain around blockchain. They paralleling the ones I mentioned in my prior post regarding its security benefits, of using blockchain to organize your supply chain (with some great links for more details):

  • “Recording the quantity and transfer of assets – like pallets, trailers, containers, etc. – as they move between supply chain nodes (Talking Logistics)
  • Tracking purchase orders, change orders, receipts, shipment notifications, or other trade-related documents
  • Assigning or verifying certifications or certain properties of physical products; for example determining if a food product is organic or fair trade (Provenance)
  • Linking physical goods to serial numbers, bar codes, digital tags like RFID, etc.
  • Sharing information about manufacturing process, assembly, delivery, and maintenance of products with suppliers and vendors.”

That kind of information, derived from real-time IoT sensor data, should be irresistible to companies compared to the relative inefficiency of today’s supply chain.

The article goes on to list a variety of benefits:

  • “Enhanced Transparency. Documenting a product’s journey across the supply chain reveals its true origin and touchpoints, which increases trust and helps eliminate the bias found in today’s opaque supply chains. Manufacturers can also reduce recalls by sharing logs with OEMs and regulators (Talking Logistics).
  • Greater Scalability. Virtually any number of participants, accessing from any number of touchpoints, is possible (Forbes).
  • Better Security. A shared, indelible ledger with codified rules could potentially eliminate the audits required by internal systems and processes (Spend Matters).
  • Increased Innovation. Opportunities abound to create new, specialized uses for the technology as a result of the decentralized architecture.”

Note that it the advantages aren’t all hard numbers, but also allowing marketing innovations, similar to the way the IoT allows companies to begin marketing their products as services because of real-time data from the products in the field. In the case of applying it to the supply chain (food products, for example), manufacturers could get a marketing advantage because they could offer objective, tamper-proof documentation of the product’s organic or non-GMO origins. Who would have thought that technology whose primary goal is increasing operating efficiency could have these other, creative benefits as well?

Applying  blockchain to the supply chain is getting serious attention, including a pilot program in the Port of Rotterdam, Europe’s largest.  IBM, Intel, Cisco and Accenture are among the blue-chip members of Hyperledger, a new open source Linux Foundation collaboration to further develop blockchain. Again, it’s the open source, decentralized aspect of blockchain that makes it so effective.

Logistics expert Adrian Gonzalez is perhaps the most bullish on blockchain’s potential to revolutionize supply chains:

“the peer-to-peer, decentralized architecture of blockchain has the potential to trigger a new wave of innovation in how supply chain applications are developed, deployed, and used….(becoming) the new operating system for Supply Chain Operating Networks

It’s also another reminder of the paradoxical wisdom of one of my IoT “Essential Truths,” that we must learn to ask “who else could share this information” rather than hoarding it as in the past. It is the very fact that blockchain data is shared that means it can’t be tampered with by a single actor.

What particularly intrigues me about widespread use of blockchain at the heart of companies’ operations and fueled by real-time data from IoT sensors and other devices is that it would ensure that privacy and security, which I otherwise fear would always be an afterthought, would instead be inextricably linked with achieving efficiency gains. That would make companies eager to embrace the blockchain, assuring their attention to privacy and security as part of the deal. That would be a definite win-win.

Blockchain must definitely be on your radar in 2017.

 

Lo and behold, right after I posted this, news that WalMart, the logistics savants, are testing blockchain for supply chain management!

 

IoT Intangibles: Increased Customer Loyalty

There are so many direct, quantifiable benefits of the IoT, such as increased quality (that 99.9988% quality rate at Siemens’s Amberg plant!) and precision, that we may forget there are also potential intangible benefits.

Most important of those is customer loyalty, brought about by dramatic shifts both in product designs and how they are marketed.

Much of this results from the IoT lifting the veil of Collective Blindness to which I’ve referred before: in particular, our prior inability to document how products were actually used once they left the loading dock. As I’ve speculated, that probably meant that manufacturers got deceptive information about how customers actually used products and their degree of satisfaction. The difficulty of getting feedback logically meant that those who most liked and most hated a product were over-represented: those who kinda liked it weren’t sufficiently motivated to take the extra steps to be heard.

Now, by contrast, product designers, marketers, and maintenance staffs can share (that critical verb from my Circular Company vision!) real-time data about how a product is actually operating in the field, often from a “digital twin” they can access right at their desks.

Why’s that important?

It can give them easy insights (especially if those different departments do access and discuss the data at the same time, each offering its own unique perspectives, on issues that will build customer loyalty:

  • what new features can we add that will keep them happy?
  • can we offer upgrades such as new operating software (such as the Tesla software that was automatically installed in every single car and avoided a recall) that will provide better customer experiences and keep the product fresh?
  • what possible maintenance problems can we spot in their earliest stages, so we can put “predictive maintenance” services into play at minimal cost and bother to the customer?

I got interested in this issue of product design and customer loyalty while consulting for IBM in the 9o’s, when it introduced the IBM PS 2E (for Energy & Environmental), a CES best-of-show winner in part because of its snap-together modular design. While today’s thin-profile-at-all-costs PC and laptop designs have made user-friendly upgrades a distant memory, one of the things that appealed to me about this design was the realization that if you could keep users satisfied that they were on top of  new developments by incremental substitution of new modules, they’d be more loyal and less likely to explore other providers.

In the same vein, as GE has found, the rapid feedback can dramatically speed upgrades and new features. That’s important for loyalty: if you maintain a continuing interaction with the customer and anticipate their demands for new features, they’ll have less reason to go on the open market and evaluate all of your competitors’ products when they do want to move up.

 

Equally important for customer loyalty is the new marketing options that the continuous flow of real-time operating data offer you. For a growing number of companies, that means they’re no longer selling products, but leasing them, with the price based on actual customer usage: if it ain’t bein’ used, it ain’t costing them anything and it ain’t bringing you any revenue!

Examples include:

  • jet turbines which, because of the real-time data flow, can be marketed on the basis of thrust generated: if it’s sitting on the ground, the leasee doesn’t pay.  The same real-time data flow allows the manufacturer to schedule predictive maintenance at the earliest sign of a problem, reducing both its cost and the impact on the customer.
  • Siemens’s Mobility Services, which add in features such as 3-D manufactured spare parts that speed maintenance and reduced costs, keeping the trains running.
  • Philips’s lighting services, which are billed on the basis of use, not sold.
  • SAP’s prototype smart vending machine, which (if you opt in) may offer you a special discount based on your past purchasing habits.

At its most extreme is Caterpillar’s Reman process, where the company takes back and remanufactures old products, giving them a new life — and creating new revenues — when competitors’ products are in the landfill.

Loyalty can also be a benefit of IoT strategies for manufacturers’ own operations as well. Remember that the technological obstacles to instant sharing of real-time data have been eliminted for the supply chain as well. If you choose to share it, your resupply programs can also be automatically triggered on a M2M basis, giving an inherent advantage to the domestic supplier who can get the needed part there in a few hours, versua the low-cost supplier abroad who may take weeks to reach your loading dock.

It may be harder to quantify than quality improvements or streamlined production through the IoT, but that doesn’t mean that dependable revenue streams from loyal customers aren’t an important potential benefit as well.

Amazon Echo: great tech present for your tech-averse parents!

Never let it be said that I get serious about my Christmas shopping until about this date!

This year, my major suggestion is about a product that it took me a full year to buy after my mother-in-law of a certain age sent last Christmas’s check: never let it be said that I rush into purchases of any kind (I should explain that I’m like the Beacon Hill Brahmin lady who explained to a New York counterpart asking where she bought her hat: “We don’t buy hats. We have hats.” Similarly, I try to avoid buying absolutely anything: I just have what I absolutely need. A strange and complex bird, I am …).

The item in question? An Amazon Echo, which, characteristically, I bought refurbished for $50 off!

Amazon Echo

Amazon Echo

That leads me to a last-minute suggestion for an unlikely use of said Echo: introducing your tech-averse parent to the benefits of smart home and Quantified Self technology (AKA my “SmartAging” paradigm to keep seniors healthy and in their own homes instead of an institution).

 As I wrote a year ago, I think the neatest thing about the Echo in that regard (and, to a lesser extent, other voice-controlled IoT devices, although they’re handicapped because they just don’t have Alexa’s quick response time and already huge and constantly growing list of “skills) is that you don’t need to know any technology to use it: you just say “Alexa:….” and she does it!

While I knew the Echo had gone far beyond its original use to stream music, I had no idea until I bought it how robust and rapidly-growing it’s “skills” have become, and that it’s really a full-fledged smart home hub (why buy a dedicated hub that just sits there and doesn’t provide any of the Echo’s other benefits? Got me..).  It’s hard to keep up, but a recent Turbo Future article, “Amazon Echo: 15 Best New Features,” gives a pretty good overview, and it seems to me that most of them involve various services that can make it a lot easier, and definitely more enjoyable, for aging parents to continue to live in and manage their homes (although some judicious Christmas morning set-up by adult children may be in order for those seniors who avoid technology like the plague), because all you have to do is talk and listen! They’ll appreciate Alexa even more if their hands are full, which is often the case in the kitchen.

Here are a few of my favorites:

  • shopping lists: my wife doesn’t share my love of gadgetry, but we both love this simple service.  Say “Alexa, add flour to my shopping list,” and it’s instantly on the Alexa app on your phone, to pull out at the supermarket. As someone who dutifully makes shopping lists and then always forgets them, that’s worth the service alone.  I won’t buy my household staples from Amazon because, despite the savings, I don’t like the ecological impact that specialized service causes, but if that’s not an issue for you, you can order products directly from Amazon using Alexa.
  • ordering services: you can hail an Uber or order a Domino’s Pizza. For a senior who doesn’t have a car, that can be great!
  • music: obviously the prime market for Amazon’s and other streaming music services such as Pandora is millennials, but, guess what, you can even get Guy Lombardo (the soundtrack of my earliest years because of my parents’ 78’s) simply by asking Alexa.  The ultimate time machine!
  • books: if you parent has vision problems, audible books may be a boon, and since Amazon now owns Audible, this is also possible.
  • news: I’ve been trying to wean myself from the news since Something Bad Happened Last Month, but I’m still drawn like a moth to the flame, so I can get NPR instantly. A growing variety of other sources are also available.
  • smart home: I just installed two Sensi thermostats as I get deeper into smart home technology on the home front. Even though they have a great app that lets me adjust the temp when I’m away from home, it’s neat to just say “Alexa, turn down the heat two degrees” and have her do the work, not me! Next up? Adding my WeMo lights.
  • cooking: even though you can now get Echo’s little brothers (Dot and Tap) for use elsewhere in the home — or even outdoors — most Echos are found in the kitchen, and nothing is worse than flour-covered hands on a cookbook.  Now you can even ask Alexa for a great recipe for a certain dish, use it to make your shopping list, and follow the steps for making the dish, all just by asking her. Neato.
  • calendar: they may not be working anymore, but seniors have got a lot of appointments — the doctor, or my wife’s 95-year old aunt’s tango lessons (I kid you not!), so if you link your Google Calendar, Alexa will make sure you’re not late.

Equally important (and I suspect this will become more of a feature in the near future) the Echo can even help you stay on top of the other part of my SmartAging vision: improving your health, because you can access your Fitbit data.  There’s already a skill to help parents with kiddies’ ailments, from our Children’s Hospital, so why not one for geriatrics as well??

That’s just for now, and independent developers are adding new “skills” for Alexa at a dizzying pace.  So, if you still don’t have a present for Grannie? Get her an Echo, and since it’s from Amazon, she’ll still get it by the 25th!

 

Blockchain might be answer to IoT security woes

Could blockchain be the answer to IoT security woes?

I hope so, because I’d like to get away from my recent fixation on IoT security breaches and their consequences,  especially the Mirai botnet attack that brought a large of the Internet to its knees this Fall and the even scarier (because it involved Philips, a company that takes security seriously) white-hat hackers attack on Hue bulbs.  As I’ve written, unless IoT security is improved, the public and corporations will lose faith in it and the IoT will never develop to its full potential.

Now, there’s growing discussion that blockchain (which makes bitcoin possible), might offer a good IoT security platform.

Ironically — for something dealing with security — blockchain’s value in IoT may be because the data is shared and no one person owns it or can alter it unilaterally (BTW, this is one more example of my IoT “Essential Truth” that with the IoT data should be shared, rather than hoarded as in the past.

If you’re not familiar with blockchain, here’s an IBM video, using an example from the highly security-conscious diamond industry, that gives a nice summary of how it works and why:

The key aspects of blockchain is that it:

  • is transparent
  • can trace all aspects of actions or transactions (critical for complex sequences of actions in an IoT process)
  • is distributed: there’s a shared form of record keeping, that everyone in the process can access.
  • requires permission — everyone has permission for every step
  • is secure: no one person — even a system administrator — can alter it without group approval.

Of these, perhaps the most important aspect for IoT security is that no one person can change the blockchain unilaterally, adding something (think malware) without the action being permanently recorded and without every participant’s permission.  To add a new transaction to the blockchain, all the members must validate it by applying an algorithm to confirm its validity.

The blockchain can also increase efficiency by reducing the need for intermediaries, and it’s a much better way to handle the massive flood of data that will be generated by the IoT.

The Chain of Things think tank and consortium is taking the lead on exploring blockchain’s application to the IoT. The group describes itself as “technologists at the nexus of IoT hardware manufacturing and alternative blockchain applications.” They’ve run several blockchain hackathons, and are working on open standards for IoT blockchains.

Contrast blockchain with the current prevailing IoT security paradigm.  As Datafloq points out, it’s based on the old client-server approach, which really doesn’t work with the IoT’s complexity and variety of connections: “Connection between devices will have to exclusively go through the internet, even if they happen to be a few feet apart.”  It doesn’t make sense to try to funnel the massive amounts of data that will result from widespread deployment of billions of IoT devices and sensor through a centralized model when a decentralized, peer-to-peer alternative would be more economical and efficient.

Datafloq concludes:

“Blockchain technology is the missing link to settle scalability, privacy, and reliability concerns in the Internet of Things. Blockchain technologies could perhaps be the silver bullet needed by the IoT industry. Blockchain technology can be used in tracking billions of connected devices, enable the processing of transactions and coordination between devices; allow for significant savings to IoT industry manufacturers. This decentralized approach would eliminate single points of failure, creating a more resilient ecosystem for devices to run on. The cryptographic algorithms used by blockchains, would make consumer data more private.”

I love it: paradoxically, sharing data makes it more secure!  Until something better comes along and/or the nature of IoT strategy challenges changes, it seems to me this should be the basis for secure IoT data transmission!