The Internet of Things Enables Precision Logistics (& Could Save Planet!)

A degree of precision in every aspect of the economy impossible before the IoT is one of my fav memes, in part because it should encourage companies that have held back from IoT strategies to get involved now (because they can realize immediate benefits in lower operating costs, greater efficiency, etc.), and because it brings with it so many ancillary benefits, such as reduced environmental impacts (remember: waste creation = inefficiency!).

       Zero Marginal Cost Society

Zero Marginal Cost       Society

I’m reminded of that while reading Jeremy Rifkin’s fascinating Zero Marginal Cost Economy which I got months ago for research in writing my own book proposal and didn’t get around to until recently.  I’d always heard he was something of an eccentric, but, IMHO, this one’s brilliant.  Rifkin’s thesis is that:

“The coming together of the Communications Internet with the fledgling Energy Internet and Logistics Internet in a seamless twenty-first-century intelligent infrastructure, “the Internet of Things (IoT),” is giving rise to a Third Industrial Revolution. The Internet of Things is already boosting productivity to the point where the marginal cost of producing many goods and services is nearly zero, making them practically free.”

Tip: when the marginal cost of producing things is nearly zero, you’re gonna need a new business model, so get this book!

At any rate, one of the three revolutions he mentioned was the “Logistics Internet.”

I’m a nut about logistics, especially as it relates to supply chain and distribution networks, which I see as crucial to the radically new “circular enterprise” rotating around a real-time IoT data hub. Just think how efficient your company could be if your suppliers — miles away rather than on the other side of the world, knew instantly via M2M data sharing, what you needed and when, and delivered it at precisely the right time, or if the SAP prototype vending machine notified the dispatcher, again on a M2M basis, so that delivery trucks were automatically re-routed to machine that was most likely  to run out first!

I wasn’t quite sure what Rifkin meant about a Logistics Internet until I read his reference to the work of Benoit Montreuil, “Coca-Cola Material Handling & Distribution Chair and Professor” at Georgia Tech, who, as Rifkin puts it, closes the loop nicely in terms of imagery:

“.. just as the digital world took up the superhighway metaphor, now the logistics industry ought to take up the open-architecture metaphor of distributed Internet communication to remodel global logistics.”

Montreuil elaborates on the analogy (and, incidentally, places this in the context of global sustainability, saying that the current logistics paradigm is unsustainable), and paraphrases my fav Einstein saying:

“The global logistics sustainability grand challenge cannot be addressed through the same lenses that created the situation. The current logististics paradigm must be replaced by a new paradigm enabling outside-the-box paradigm enabling meta-systemic creative thinking.”

wooo: meta-systemic creative thinking! Count me in!

Montreuil’s answer is a “physical Internet” for logistics, which he says is a necessity not only because of the environmental impacts of the current, inefficient system (such as 14% of all greenhouse gas emissions in France), but also its ridiculous costs, accounting for 10% of the US GDP according to a 2009 Department of Transportation report!  That kind of waste brings out my inner Scotsman!

Rifkin cites a variety of examples of the current system’s inefficiency based on Montreuil’s research:

  • trucks in the US are, on average, only 60% full, and globally the efficiency is only 10%!
  • in the US, they were empty 20% of miles driven
  • US business inventories were $1.6 trillion as of March, 2013 — so much for “just-in-time.”
  • time-sensitive products such as food, clothes and medical supplies are unsold because they can’t be delivered on time.

Montreuil’s “physical Internet” has striking parallels to the electronic one:

  • cargo (like packets) must be packaged in standardized module containers
  • like the internet, the cargo must be structured independently of the equipment, so it can be processed seamlessly through a wide range of networks, with smart tags and sensors for identification and sorting (one of the first examples of the IoT I wrote about was FedEx’s great SenseAware containers for high-value cargo!)

With the Logistics Internet, we’d move from the old point-to-point and hub-and-spoke systems to ones that are “distributed, multi-segment, intermodal.” A single, exhausted, over-worked (and more accident-prone) driver would be replaced by several. It’s a  little counter-intuitive, but Montreuil says that while it would take a driver 240 hours to get from Quebec to LA under the current system, instead 17 drivers in a distributed one would each drive about 3 hours, and the cargo would get there in only 60 hours.

Under the new system, the current fractionated, isolated warehouse and distribution mess would be replaced by a fully-integrated one involving all of the 535,000 facilities nationwide, cutting time and dramatically reducing environmental impacts and fuel consumption.

Most important for companies, and looping back to my precision meme, “Montreuil points out that an open supply network allows firms to reduce their lead time to near zero if their stock is distributed among some of the hundreds of distribution centers that are located near their final buyer market.” And, was we have more 3-D printing, the product might actually be printed out near the destination. How cool is that?

Trucking is such an emblematic aspect of the 20th-century economy, yet, as with the neat things that Union Pacific and other lines are doing with the 19th-century’s emblematic railroads, they can be transformed into a key part of the 21-st century “precision economy” (but only if we couple IoT technology with “IoT thinking.”

Now let’s pick up our iPads & head to the loading dock!


 

PS: I’ll be addressing this subject in one of my two speeches at the SCM2016 Conference later this month. Hope to see you there! 

 

FedEx package…

I’ll Speak Twice at Internet of Things Global Summit Next Week

I always love the Internet of Things Global Summit in DC because it’s the only IoT conference I know of that places equal emphasis on both IoT technology and public policy, especially on issues such as security and privacy.

At this year’s conference, on the  26th and 27th, I’ll speak twice, on “Smart Aging” and on the IoT in retailing.

2015_IoT_SummitIn the past, the event was used to launch major IoT regulatory initiatives by the FTC, the only branch of the federal government that seems to really take the IoT seriously, and understand the need to protect personal privacy and security. My other fav component of last year’s summit was Camgian’s introduction of its Egburt, which combines “fog computing,” to analyze IoT data at “the edge,” and low power consumption. Camgian’s Gary Butler will be on the retail panel with me and with Rob van Kranenburg, one of the IoT’s real thought leaders.

This year’s program again combines a heady mix of IoT innovations and regulatory concerns. Some of the topics are:

  • The Internet of Things in Financial Services and the Insurance sector (panel includes my buddy Chris Rezendes of INEX).
  • Monetizing the Internet of Things and a look at what the new business models will be
  • The Connected Car
  • Connected living – at home and in the city
  • IoT as an enabler for industrial growth and competition
  • Privacy in a Connected World – a continuing balancing act

The speakers are a great cross-section of technology and policy leaders.

There’s still time to register.  Hope to see you there!

 

 

AliveCor Mobile ECG: the IoT Can Save Your Life!

Got your attention? I find there’s nothing like the fear of death to focus one’s attention.

AiiveCor

AliveCor

Somehow I managed to forget blogging about one of the real highlights of last Spring’s RE-WORK Connect Summit here in Boston: the AliveCor Mobile ECG.*

Perhaps the most important thing about the Mobile ECG is that it is not just a helpful Quantified Self fitness device, but has past the rigors of the FDA licensing process, building both users’ and docs’ confidence in its reliability as a diagnostic tool, and also underscoring that  IoT devices can be significant parts of mobile health strategies. As Dr. Albert said to Forbes, ““No one cares whether their Fitbit is accurate or not …. A point of here or there. With ECGs, that’s different.”  In 2015 the FDA also approved an algorithm instantly letting you know if your reading was normal.

Because of the FDA approval, I put the Alive ECG in that special category of IoT devices and services that are important both in their own right and because of their symbolic role, especially when they meet my test of the IoT allowing “what can you do that you couldn’t do before,” in this case, a self-administered device that isn’t just generally informative about your fitness level, but also gives reliable medical documentation (especially since this allows that documentation to come as part of your activities of daily living, not requiring you to be in the artificial setting of a doctor’s office or hospital). 

I see it as a critical tool in my “Smart Aging” paradigm.

Atrial fibrillation (a common abnormal heart rhythm), the condition the ECG documents, is a huge, and growing, problem. The latest figures I could find, from four years ago, show that people who suffer from it are hospitalized twice as frequently as those who don’t have it, and the annual costs in the US alone are $26 billion.

I found the price on Froogle as low as $86 for one to fit a 5s. Sweeeet!

Here’s how it works.  The AliveCor is always available when you suspect you may have a heart problem, because it’s your smart-phone’s case! How brilliant is that?  You just rest the two metal pads on your fingers or chest to record an ECG in 30 seconds.

AliveCor ap reading

AliveCor ap reading

AliveCor has recently beefed up its app by adding the “Heart Journal.” After each reading, you just tap on a Symptom, Activity or Diet tag to add it to your recording, or, like a lot of Quantified Self apps, you can also add in notes between readings about possible indicators such as what you’re eating or your activities. The Beat Fluctuation feature lets you see how your heartbeat changes from beat to beat.

I couldn’t help but think how the AliveCor would have helped me last Winter, when Boston endured the 1-in-26,315-years-Winter-From-Hell (nope: no typo!) .  Like everyone else, I was perilously perched on my ladder, 20′ high, sticking my left hand through the ladder to pound away at an ice dam to my right with a REALLY heavy sledge hammer.  Unlike many others doing the same thing, I’m old enough (ahem..) that this counted as Risky Business.  After several hours, I started to feel chest pain.  Two days and many heart tests later, I emerged from the hospital with my own diagnosis confirmed: just a muscle strain caused by the weird position of my hammering. Couldn’t help thinking that if I’d had an AliveCor on my phone, I could have just whipped it out, taken a reading while on the ladder, and, as the web site sez,” AliveCor’s FDA-cleared Normal Detector will determine right away when your ECG is normal,” and gone back to chipping away!

Loved this quote about the AliveCor’s significance:

“Just as the introduction of thermometers and blood pressure cuffs in the past century helped patients to monitor their health, now the ability to record one’s own electrocardiogram – and get an interpretation instantly – empowers the 21st century patient to take charge of their heart health.” –Ronald Karlsberg, MD Clinical Professor of Medicine, Cedars-Sinai Heart Institute


 

*in my defense, I was mesmerized by AliveCor founder  Dr. David Albert’s colorful bowties….

 

Boston Crowdsourced Campaign to Give City 1st Citywide Free IoT Data Network in US

You’ll remember I got quite excited while blogging the new citywide free IoT data network in Amsterdam, and decided on the spot to make Boston the first US city with such a network.  Here’s our release!

Crowdsourced Campaign to Create Free Citywide IoT-Data Network in Boston
would be first city in US to share Internet of Things’ benefits citywide

(Boston, September 21, 2018) — A crowdsourced campaign will make Boston the first US city with a free, citywide Internet of Things (IoT) data network, facilitating entrepreneurial, municipal, and neighborhood innovations in everything from traffic reduction to public health.

The Boston campaign is based on one in Amsterdam that built a similar network in a month (although not penetrating all neighborho0ds), and activists there are helping the Boston effort. While being built, the Amsterdam system already spawned uses such as a water detector to canal boat owner a text that a boat is filling with water and a system for the Port of Amsterdam using sensors to create real-time information to help manage boat traffic more efficiently. The campaign complements opening of the INEX IoT Impact Lab in New Bedford, President Obama’s $160 million fund for “smart cities” projects, and the Amsterdam group’s effort to spread the approach to 5 continents.

The network will use new LoRaWAN gateways, which  let things exchange data without 3G or Wi-Fi, and feature low battery usage and a range of up to 7 miles.  Several companies have already donated units to the Boston campaign before the launch.

According to IoT thought leader W. David Stephenson of Stephenson Strategies, who also founded the 1,500 member Boston IoT Meetup (which will form the core of the crowd-sourced campaign), “We hope to gain wide public and private support because this will not only spark profitable innovation, but also other efforts that will make Boston, especially the neighborhoods, a better place to live. Think of what your companies — and the city as a whole — could do if we had such a network: the entire city of Boston would become an IoT lab/sandbox, encouraging incredible innovation in use of IoT. But we must move quickly if we are to be the first US city with such a network.”

IoT entrepreneur Chris Rezendes of INEX Advisors, co-chair of the IoT Meetup and creator of the New Bedford IoT Impact Lab, said “the IoT will prove its real value when people and companies can see the tangible results improving their daily lives and corporate efficiency. From New Bedford to Boston, we’re a world leader in making the IoT a tangible reality for companies and cities alike.”

Wish us luck: if we’re successful, look forward to working with The Things Network to spread the concept worldwide — the sooner the better!

Give It Up, People: Government Regulation of IoT Is Vital

Could this be the incident that finally gets everyone in the IoT industry to — as I’ve said repeatedly in the past — make privacy and security Job 1 — and to drop the lobbying groups’ argument that government regulation isn’t needed? 

I hope so, because the IoT’s future is at stake, and, frankly, not enough companies get it.

I’m referring to the Chrysler recall last week of 1.4 million Jeeps for a security patch after WIRED reported on an experiment in which two white-hat hackers remotely disabled a Jeep on an Interstate from miles away, exploiting a vulnerable link between its entertainment and control systems.  Put yourself in the place of reporter Andy Greenberg, then tell me with a straight face that you wouldn’t be out of your mind if this happened to you:

“As the two hackers remotely toyed with the air-conditioning, radio, and windshield wipers, I mentally congratulated myself on my courage under pressure. That’s when they cut the transmission.

Immediately my accelerator stopped working. As I frantically pressed the pedal and watched the RPMs climb, the Jeep lost half its speed, then slowed to a crawl. This occurred just as I reached a long overpass, with no shoulder to offer an escape. The experiment had ceased to be fun.

At that point, the interstate began to slope upward, so the Jeep lost more momentum and barely crept forward. Cars lined up behind my bumper before passing me, honking. I could see an 18-wheeler approaching in my rearview mirror. I hoped its driver saw me, too, and could tell I was paralyzed on the highway.

“You’re doomed!” Valasek [one of the hackers] shouted, but I couldn’t make out his heckling over the blast of the radio, now pumping Kanye West. The semi loomed in the mirror, bearing down on my immobilized Jeep.”

OK: calm down, get a cool drink, and, when your Apple Watch says your heart beat has returned to normal, read on….

But, dear reader, our industry’s leaders, assumedly knowing the well-publicized specifics of the Chrysler attack, had the hubris to still speak at a hearing of the Internet Subcommittee of the House of Representatives Judiciary Committee last week and claim (according to CIO) that that government regulation of the IoT industry wasn’t needed.

CEA CEO Gary Shapiro said in calling for government “restraint”:

“It’s up to manufacturers and service providers to make good decisions about privacy and security, or they will fail in the marketplace….. Industry-driven solutions are best to promote innovation while protecting consumers.”

Sorry, Gary: if someone dies because their Jeep got spoofed, the survivors’ attorneys won’t be content with the company’s failure in the marketplace.

There are some important collaborative efforts to create privacy and security standards for the IoT, such as the AllSeen Alliance. However, as I’ve written before, there are also too many startups who defer building in privacy and security protections until they’ve solved their technology needs, and others, most famously TRENDnet, who don’t do anything at all, resulting in a big FTC fine.  There are simply too many examples of hackers using the Shodan site to hack into devices, not to mention academics and others who’ve showed security flaws that might even kill you if exploited.

One local IoT leader, Paddy Srinivasan of LoMein, gets it, as reported today by the Boston Globe‘s Hiawatha Bray:

“‘I think it is a seminal moment…. These new devices need a fresh approach and a new way of thinking about security, and that is the missing piece.'”

But it’s too late to just talk about self-policing.

Massachusetts’ own Ed Markey and his Connecticut counterpart, Richard Blumenthal, have called the associations’ bluff, and filed legislation, The Security and Privacy in Your Car Act (AKA SPY Car, LOL)  that would require the National Highway Traffic Safety Administration (NHTSA) and the Federal Trade Commission (FTC) to establish federal standards to secure cars and protect drivers’ privacy. It would also create a rating system — or “cyber dashboard”— telling drivers about how well the vehicle protects drivers’ security and privacy beyond those minimum standards. This comes in the wake of the Markey study I reported on last Winter documenting car companies’ failure to build in adequate cyber-hacking protections.

Guess what, folks?  This is only the beginning.  Probably the only thing I’ve ever agreed with Dick Cheney on (ok, we agree it’s cool to have been born in Wyoming and that Lynne Cheney is a great writer), is that it wouldn’t be cool for the Veep to have his pacemaker hacked, so you can bet there will be legislation and regulations soon governing privacy and security for wearables as well.

As I’ve said before, I come at this issue differently from a lot of engineers, having earned my keep for many years doing crisis management for Fortune 100 companies that bet the farm by doing dumb things that could destroy public trust in them overnight. Once lost, that trust is difficult, if not impossible, to regain.  Even worse, in this case, cavalier attitudes by even one IoT company, if the shock value of the results is great enough, could make everyone in the industry suffer.

So, if you’re arguing for no regulation of the IoT industry, I have just one suggestion: shut up,clean up your act and take a positive role in shaping regulations that would be performance-based, not prescriptive: the horse has already left the barn.

Now I have to check my Apple Watch to see when my heart rate will get back to normal.

 

The IoT Can Improve Safety and Profitability of Inherently Dangerous Job Sites

You may remember I wrote several months ago about a collaboration between SAP and SK Solutions in Dubai (interesting factoid: Dubai is home to almost 25% of the world’s cranes [assume most of the rest nest at Sand Hill, LOL], and they are increasingly huge, and that makes them difficult to choreograph.

I’m returning to the subject today, with a slightly broader emphasis on how the IoT might manage a range of dangerous job sites, such as mining and off-shore oil rigs, allowing us to do now that we couldn’t do before, one of my IoT Essential Truths.

I’m driven in part by home-town preoccupation with Boston’s bid for the 2024 Olympics, and the inevitable questions that raises on the part of those still smarting from our totally-botched handling of the last big construction project in these parts, the infamous “Big Dig” tunnel and highway project.

I’m one of those incurable optimists who think that part of ensuring that the Olympics would have a positive “legacy” (another big pre-occupation in these parts) would be to transform the city and state into the leading example of large-scale Internet of Things implementation.

There are a couple of lessons from SAP and SK Solutions’ collaboration in Dubai that would be relevant here:

    • The system is real-time: the only way the Boston Olympic sites could be finished in time would be through maximizing efficiency every day. Think how hard that is with a major construction project: as with “for want of a nail the kingdom was lost,” the sensitive interdependence between every truck and subcontractor on the site — many of which might be too small to invest in automation themselves — is critical. If information about one sub being late isn’t shared, in real-time, with all the other players, the delays — and potential collisions — will only pile up. The system includes an auto-pilot that makes immediate adjustments to eliminate operator errors. By contrast, historical data that’s only analyzed after the fact won’t be helpful, because there’s no do-overs, no 2025 Olympics!
    • The data is shared: that’s another key IoT Essential Truth.  “Decision-makers using SK Solutions on a daily basis span the entire organization. Besides health and safety officers, people responsible for logistics, human resources, operations and maintenance are among the typical users.”  The more former information silos share the data, the more likely they are to find synergistic solutions.
    • The system is inclusive, both in terms of data collection and benefits: SK Solutions’ Founder and Inventor Séverin Kezeu, came up with his collision-avoidance software pre-IoT, but when the IoT became practical he partnered with SAP, Cisco, and Honeywell to integrate and slice and dice the data yielded by the sensors they installed on cranes and vehicles and other sources.  For example, the height of these cranes makes them vulnerable to sudden weather changes, so weather data such as wind speed and direction must be factored in, as well as the “machinery’s position, movement, weight, and inertia…. The information is delivered on dashboards and mobile devices, visualized with live 3-D images with customizable views. It’s also incredibly precise.”As a result, by using SAP’s HANA platform, a system developed to reduce construction accidents also makes predictive maintenance of the cranes and other equipment, and lets the construction companies monitor Key Performance Indicators (KPIs) such as asset saturation, usage rates, and collisions avoided.  McKinsey reports that construction site efficiency could improve dramatically due to better coordination: “One study found that buffers built into construction project schedules allowed for unexpected delays resulting in 70 to 80 percent idle time at the worksite.Visibility alone can allow for shorter buffers to be built into the construction process.”

Several other great IoT solutions come to mind at the same time, both relating to dangerous industries. Off-shore oil rigs and mining were treated at length in the recent McKinsey omnibus IoT forecast, “The Internet of Things: Mapping the Value Beyond the Hype:”

  • off-shore rigs: “Much of the data collected by these sensors [30,000 on some rigs] today is used to monitor discrete machines or systems. Individual equipment manufacturers collect performance data from their own machines and the data can be used to schedule maintenance. Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.” (my emphasis). 
  • mining: “In one mining case study, using automated equipment in an underground mine increased productivity by 25 percent. A breakdown of underground mining activity indicates that teleremote hauling can increase active production time in mines by as much as nine hours every day by eliminating the need for shift changes of car operators and reducing the downtime for the blasting process. Another source of operating efficiency is the use of real-time data to manage IoT systems across different worksites, an example of the need for interoperability. In the most advanced implementations, dashboards optimized for smartphones are used to present output from sophisticated algorithms that perform complex, real-time optimizations. In one case study from the Canadian tar sands, advanced analytics raised daily production by 5 to 8 percent, by allowing managers to schedule and allocate staff and equipment more effectively. In another example, when Rio Tinto’s (one mine) crews are preparing a new site for blasting, they are collecting information on the geological formation where they are working. Operations managers can provide blasting crews with detailed information to calibrate their use of explosives better, allowing them to adjust for the characteristics of the ore in different parts of the pit.”
 In all of these cases, the safety and productivity problems — and solutions are intertwined.  As McKinsey puts it:
“Downtime, whether from repairs, breakdowns, or maintenance, can keep machinery out of use 40 percent of the time or more. The unique requirements of each job make it difficult to streamline work with simple, repeatable steps, which is how processes are optimized in other industries. Finally, worksite operations involve complex supply chains, which in mining and oil and gas often extend to remote and harsh locations.”
Could it be that the IoT will finally tame these most extreme work situations, and bring order, safety, and increased profitability?  I’m betting on it.

Eureka! MYLE TAP: Nice Example of IoT Letting You Do Something You Couldn’t

I like to occasionally feature products that aren’t earth-shaking in their own right (such as the cameleon shoes that can change their appearance with the swipe of an app) , but nicely illustrate one of my IoT acid tests: what can you do that you couldn’t do before?

I love those, because they can get our creative juices boiling to think of other unprecedented IoT devices.

The MYLE TAP Thought Recorder

Here’s a nice example that I suspect may itself facilitate a lot of “Archimedes Moments” (just coined that one, LOL), where IoT users will leap from their baths and run nude through the streets, shrieking “Eureka,” because of their sudden insights into some great new IoT device (actually not sure of that image.  Are IoT enthusiasts slim and attractive?),

One little factoid really makes this one come alive: “the average person generates over 70,000 thoughts a day.” Now that’s a staggering unstructured data challenge!

Might be of particular interest, Dear Readers, to those of us on the far side of 50 who have a ton of great ideas but, how shall we say this delicately, don’t always remember them 15 minutes later).

At any rate, the crowd-funded ($83,707 raised so far, by 755 people in 15 days, compared to a $50,000 goal. As of this writing the campaign goes for 16 more days, so you can still get in on the ground-floor.) MYLE TAP will allow users to effortlessly record their thoughts in real-time (which, BTW, is a crucial element in how the IoT really transforms everything: instead of limited data, obtained retroactively, we can get limitless data now, when we can still act on it).

To activate the attractive device you simply tap it.  It understands 42 languages right out of the box!

There are some really neat components of the device that could really make your life a lot simpler because you can speak what you want to record (I don’t know about you, but the more I learn about the powers of Siri and her friends, the more I think voice-interface is really the way to go in the future, especially for tech-averse seniors, the targets of my Smart Aging concept). As the site says, “your saved notes are analyzed by context to generate you meaningful results via smartphone applications.” Here are the first uses:

  • Calorie Counter: “’I had one Caesar salad and one big apple.’ MYLE calculates how many calories you have consumed.”
  • Budget & Spending: “’Spent $7 on coffee and $40 on gas’, and MYLE enters it into your personal and business expense tracker.”  IMHO, this could be a REAL value!
  • Grocery List: “Tell MYLE ‘buy eggs, milk, flour,’ Your shopping list is built automatically.”
  • Calendar: “Tell MYLE ‘Pick Sophia up from school at four,’ and a new item is added to your calendar.”
  • Social Media: “Share your memorable event or experience. One tap can post can post it on your Facebook or Twitter account.”
  • Exercise: “Excercise with your MYLE TAP. Build and keep records of your progress.”

I can already do a lot of these things with my iPhone and Apple Watch, and perhaps the Watch will eventually do all these things once developers have created new apps, but I like the idea of a single, snazzy-looking device that can do all of them. And, smart people that they are, the MYLE developers have developed an open SDK and API. Once the IFTTT community gets hold of it, they’ll come up with ideas to extend the device’s utility that the MYLE folks never would have conceived of!

The MYLE TAP — doing something that we couldn’t do before!


 

Here are the technical details, courtesy of Atmel:

“Based on an Atmel | SMART SAM4S MCU, the super compact and lightweight gadget is equipped with an accelerometer, a Bluetooth Low Energy module, a few LEDs and a built-in battery capable of running up to a week on a single charge. MYLE TAP boasts some impressive memory as well, with a storage capacity of up to 2,000 voice notes.”

 

McKinsey IoT Report Nails It: Interoperability is Key!

I’ll be posting on various aspects of McKinsey’s new “The Internet of Things: Mapping the Value Beyond the Hype” report for quite some time.

First of all, it’s big: 148 pages in the online edition, making it the longest IoT analysis I’ve seen! Second, it’s exhaustive and insightful. Third, as with several other IoT landmarks, such as Google’s purchase of Nest and GE’s divestiture of its non-industrial internet division, the fact that a leading consulting firm would put such an emphasis on the IoT has tremendous symbolic importance.

McKinsey report — The IoT: Mapping the Value Beyond the Hype

My favorite finding:

“Interoperability is critical to maximizing the value of the Internet of Things. On average, 40 percent of the total value that can be unlocked requires different IoT systems to work together. Without these benefits, the maximum value of the applications we size would be only about $7 trillion per year in 2025, rather than $11.1 trillion.” (my emphasis)

This goes along with my most basic IoT Essential Truth, “share data.”  I’ve been preaching this mantra since my 2011 book, Data Dynamite (which, if I may toot my own horn, I believe remains the only book to focus on the sweeping benefits of a paradigm shift from hoarding data to sharing it).

I was excited to see that the specific example they zeroed in on was offshore oil rigs, which I focused on in my op-ed on “real-time regulations,” because sharing the data from the rig’s sensors could both boost operating efficiency and reduce the chance of catastrophic failure. The paper points out that there can be 30,000 sensors on an rig, but most of them function in isolation, to monitor a single machine or system:

“Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.”

Yet, the researchers found that only about 1% of the rig data was being used, because it rarely was shared off the rig with other in the company and its ecosystem!

The section on interoperability goes on to talk about the benefits — and challenges — of linking sensor systems in examples such as urban traffic regulation, that could link not only data from stationary sensors and cameras, but also thousands of real-time feeds from individual cars and trucks, parking meters — and even non-traffic data that could have a huge impact on performance, such as weather forecasts.  

While more work needs to be done on the technical side to increase the ease of interoperability, either through the growing number of interface standards or middleware, it seems to me that a shift in management mindset is as critical as sensor and analysis technology to take advantage of this huge increase in data:

“A critical challenge is to use the flood of big data generated by IoT devices for prediction and optimization. Where IoT data are being used, they are often used only for anomaly detection or real-time control, rather than for optimization or prediction, which we know from our study of big data is where much additional value can be derived. For example, in manufacturing, an increasing number of machines are ‘wired,’ but this instrumentation is used primarily to control the tools or to send alarms when it detects something out of tolerance. The data from these tools are often not analyzed (or even collected in a place where they could be analyzed), even though the data could be used to optimize processes and head off disruptions.”

I urge you to download the whole report. I’ll blog more about it in coming weeks.

Energy to Power the #IoT: it’s really just a matter of child’s play

Posted on 12th June 2015 in energy, environmental, Internet of Things, M2M, mobile, sensors, wearables

Saving the Earth from global warming is going to require reducing our use of fossil fuels, yet we keep coming up with new technologies, such as the Internet of Things, that will require even more energy. So how do we reconcile the two needs?

In part, through harvesting ambient energy, and, most cleverly, kinetic energy generated in the process of doing something else, from moving liquids through pipelines, wheels as vehicles move, or even as we humans move about in our daily lives.

As you’ll see from the examples below, there’s enough projects in the field that I’m confident a growing number of sensor networks will be powered through ambient energy in the future. Equally important, in the not-too-distant future we’ll laugh that we once plugged in our smartphone and watches to charge them, rather than harvesting the energy we generate every day simply by moving around.

I saw an incredible example at the recent Re-Work IoT Summit in Boston, courtesy of Jessica O. Matthews of Uncharted Play. By my calculations, Matthews’ own energy output would allow shutting down 2.3 nukes: before her session began, I saw this striking woman on the stage — Matthews –skipping rope.

In high heels!

Then the fun began. Or should I say, the energy production.

Matthews, an MIT grad, works largely in Africa, creating very clever playthings that — ta da! — harvest energy, such as the very cool Soccket ball shown in the video above (you can see here how it’s made).  It has a battery built in that’s charged by the large amount of kinetic energy created by kids on the playground who are just having fun.  At night, they take the ball home and, voila, plug a socket into the side of the ball and they have precious light to read by. How incredibly cool is that?

The Pulse jump rope powers two lights

Matthews’ jump rope (“The Pulse”)? The kinetic energy from that  powers TWO lights!

But there’s a lot of other neat stuff going on in terms of capturing kinetic energy that could also power IoT devices:

  • Texas Instruments has harvested energy to run sensors from changes in temperature, vibrations, wind and light.  I knew about harvesting the energy from pipeline vibrations, but hadn’t thought about getting it from the temperature differential between the interior of pipes carrying hot water and the outside air. TI says that yields a paltry 300-400 millivolts, but they’ve figured out how a DC-to-DC switching converter can increase it to 3-5 volts — enough to charge a battery.
  • TI is also researching how kinetic energy could charge your phone:”To power wearables, the company has demonstrated drawing energy from the human body by using harvesters the size of wristwatch straps.. It has worked with vibration collectors, for instance, about the same size as a key.”It’s possible that a smartwatch could use two harvested power sources, light and heat, from the body. These sources may not gather enough power to keep a smartwatch continuously operating without action by the user to charge it, but it may give the user’s device a lot more battery life.”
  • Perhaps most dramatically of all, as I reported before, there’s some incredible research on ambient energy underway at the University of Washington, where they use “ambient backscatter,” which: ‘…leverag[es] existing TV and cellular transmissions, rather than generating their own radio waves. This novel technique enables ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.’”

    PoWiFi, harvesting ambient energy

    Now, a member of that team,Vamsi Talla, has harvested energy from ambient wi-fi,  “PoWiFi,” as it’s called, to power a temperature sensor and to let a surveillance camera take a picture every 35 minutes (given how pervasive surveillance cameras are today, that could really be a godsend — or a nightmare, depending on your perspective). “For the experiment, hot-spots and routers were modified to broadcast noise when not being used for data transmission. This is because Wi-Fi signals are broadcast in bursts across different frequencies which makes the energy too intermittent to be useful.”  (TY 2 Jackie Bassett of  SealedSpeed for this one).

Bottom line: forget those charging pads that are starting to crop up. In the future, you’ll be powering your phone, and the very devices that sensors are monitoring will be powering them. A win for the IoT — and the environment!

PS: jury’s still out on whether we’ll all have to register with FERC as utilities….

Exploiting full potential of iBeacons for Internet of Things

One of the most exciting aspects of the Internet of Things is seeing how, when more people are exposed to one of its technologies, they find uses for it that the inventors might not have visualized.  I give you … the iBeacon.

The Apple protocol (again, my obligatory disclaimer that I work part-time at an Apple Store, but have no inside information or any obligation to hype their tech) is used in Bluetooth low-energy transmitters (“beacons”) that broadcast their location to nearby devices so they can perform actions such as social-media check-ins or push notifications while near the beacon.  They’re most frequently used in marketing to offer targeted bargains, and primarily have been used by the biggest retailers and sites such as major-league ballparks, but, as you’ll see, not always.

At the Re-Work Internet of Things Summit I met two young entrepreneurs, Justin Mann and Ben Smith  of Beacons in Space, a Boston startup that would allow new apps to leverage existing installed iBeacons — typically installed by large retailers and closed to others —  instead of having to add more beacons in a given space. This would be done through a subscription model with a simple API on top of a beacon rental marketplace. It would allow smaller developers can scale their developments and projects without having to invest in a redundant iBeacon array.

But I was particularly interested in how some clever developers are applying iBeacons outside retail settings.

One is at the Zoom Torino Biopark in Cumiana, Italy. iBeacons around the zoo trigger an app including an interactive map that helps visitors move around the park by giving their exact location and showing where other attractions are located.

“As visitors discover the six different habitat environments of the park, they will be able to unlock specific details, facts and suggestions throughout their journey thanks to hidden Bluetooth transmitting beacons, which trigger relevant content on a visitor’s smartphone based on their location.

“Users will also benefit from alerts on their mobile device informing them of special events during their visit, like meeting animals or presentations. By engaging with the app, visiting certain locations within the park and answering quiz questions, visitors can also earn promotional items and discount coupons for use within the park.”

installing iBeacon on Bucharest trolley to guide visually-impaired

Best of all,  Romania is using them in a very clever system, The Smart Public Transport (SPT) solution, to give visually-impaired riders audio clues through their smartphone about Bucharest’s bus system, a joint project of the Smart Public Transport project and Romania’s RATB trolley buses. Onyx Beacon, a Romanian company, is installing 500 Beacons on the city’s most heavily used public transportation vehicles (the project, incidentally, was funded by Vodafone under its “Mobile for Good” program, encouraging use of technology for social programs and to solve specific problems of those with special personal needs).

All of these projects show the utility — provided there are privacy and security provisions built in, and the systems are opt-in, of iBeacons for giving hyper-localized information and offers. If the Beacons in Space concept takes off, to eliminate the need to deploy more iBeacons for every new app, the concept might really become an important part of the IoT, whether for retail or civic uses.

http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management