Why Am I Not Surprised? GE Does It Again As IoT Innovator

POST-SCRIPT : LATE-BREAKING NEWS: GE WILL ANNOUNCE TOMORROW THAT THEY’RE MOVING THEIR WORLD HEADQUARTERS TO BOSTON.  EVEN THOUGH THE HEART OF THE COMPANY’S INDUSTRIAL INTERNET STRATEGY WILL REMAIN ITS SOFTWARE CENTER IN SILICON VALLEY, THIS SHOULD INEVITABLY BOOST BOSTON’S STATURE IN THE IoT: WE’RE ALREADY RANKED 4TH IN THE WORLD.


PROMINENT DISCLAIMER: I AM NOT ON THE GENERAL ELECTRIC PAYROLL, AS AMAZING AS THAT MAY SEEM CONSIDERING ALL THE NICE THINGS I SAY ABOUT THEM.

C by GE smart bulbs

Whether it’s their incredible Durathon battery plant or the 220-ton computer-on-wheels Evolution loco, I don’t think there’s any major company that gets it more about the IoT, or, as they brand it, the Industrial Internet. As I’ve said before, it’s not just IoT products, but also “IoT Thinking” (collaboration, closing the loop, etc.) on their part. So why am I not surprised that they’ve gone back to their roots and come up with the most practical smart bulb so far, the “C by GE” bulbs?

Surely the Wizard of Menlo Park is smiling down on them for this one!

This is not to take away from the pioneering Philips Hue bulbs (16 million colors? You kidding?), or the neat Playbulb ones that double as speakers, but it seems to me these are the ones so far (possible exception, the $15 Cree ones — although I’ve not been happy with short life-span of my earlier Cree LEDs….) but these seem to me to combine some kewl new features that weren’t available before smart bulbs with affordability: a kit of 4 will be priced at $50 if you order online.

So what’s the big deal? Unlike the HUEs and GE’s earlier Link LED, these won’t require linking to a hub to control them: they link to your phone directly, using Bluetooth.

The bulbs will come in two flavors, to start with: a plain-vanilla dimmable one for most rooms of the house, and the spiffy “C Sleeps” for the bedroom, which will allow you to choose three different color hues, including a bright white to energize yourself on waking, a middling one for most of the day, and a yellowish one that research has shown to be more sleep-inducing, for night time (for you wonks, here’s the science).

Equally important, according to C|NET, they’ll also be more affordable than other multi-hue bulbs:

“The C Sleep LEDs won’t be the first color-tunable smart LEDs on the market, but they’ll certainly be some of the most affordable. The Osram Lightify Starter Kit comes with just a single bulb and costs $60, while the Lifx White 800 LED costs $40. With two color-tunable bulbs plus two standard smart bulbs for $50, C by GE definitely looks like the better value. What’s more, GE is promising limited early-bird pricing that will bring the cost of a starter pack down to $40 for those willing to buy in at launch.”

Because it’s Bluetooth controlled you won’t be able to control it from outside the house, so I’m gonna have to stick with my WeMo sockets to make my wife happy, but supposedly it will work with the Apple HomeKit (“Siri, it’s time for bed”) or if you already have a Wink hub.

Once again, Thanks, Jeff Immelt!

PS: $1.92 a yr. in electric costs: they’ll help save the planet as well

 

Amazon Echo: is it the smart home Trojan Horse?

Could Amazon’s Echo be the Trojan Horse that gets the smart home and IoT inside our homes — and consciousness?

Typical Amazon Echo commands

I’ve always suspected Amazon was critical to corporate adoption of e-commerce in the ’90s because so many C-level executives were introduced to the concept by doing online holiday shopping for their families.  Just a hunch …

Fast forward to this holiday, and I suspect Amazon’s Echo will have a similar impact for the IoT and, in particular, smart homes (aided, no doubt, by the redoubtable Oprah, who gave it her imprimatur as one of her Favorite Things — which now, conveniently, has its own page on Amazon — for this year!).

In case you’ve been hibernating for the past few months, during which time the Echo has taken off, it’s the slim (9.25″ x 3.27″) cylinder that sits on your counter, and, after starting out largely to access Amazon’s streaming music service by voice, seems to take on new functions every week.

I suspect it’s the voice input that’s most important about Echo: because voice doesn’t require any technical skills.  I can’t think of any dedicated device (Apple’s Siri, a service on almost all its devices but the computers, is right up there, but a service, not a device. Again, obligatory disclaimer that I work part-time at The Apple Store but am not privy to any inside secrets) that better embodies the dictum of IoT “father” Mark Weiser, that:

The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life
until they are indistinguishable from it.

Alexa shopping list "recipe" on IFTTT

Alexa shopping list “recipe” on IFTTT

For me, the critical step was when Echo was added to my fav IoT site, IFTTT, which makes the IoT’s benefits proliferate by allowing you and me to create “recipes” to trigger devices without requiring any programming skills.

The number of new recipes allowing Alexa to “trigger” an action by a device, including Hue lights and the Nest thermostat, is constantly growing (you’ll notice that many of them relate to actions such as adding to shopping lists, a clever way of making it easier for users to shop at a certain online behemoth..).

An indication of exactly how far-reaching Echo could be as a hub?  It now even interfaces with the Automatic device, to help manage your car more effectively: “Alexa, how much gas is left in my tank?”

I’m also excited about Echo’s potential role as a hub for my “SmartAging” concept: granny starts out listening to Guy Lombardo’s “Managua Nicaragua” streaming on Amazon Prime, and the next thing you know, she’s saying “Alexa, turn down the thermostat 3 degrees.”  What could be easier? Haven’t seen any Echo links to Quantified Self devices yet, but I suspect that’s only a matter of time, and others are now enthused about its benefits to the disabled.


 

PS: You can track new developments with Echo on its Twitter feed, as well as one from Dave Isbitski, the Echo’s chief evangelist.

I’ll Speak Twice at Internet of Things Global Summit Next Week

I always love the Internet of Things Global Summit in DC because it’s the only IoT conference I know of that places equal emphasis on both IoT technology and public policy, especially on issues such as security and privacy.

At this year’s conference, on the  26th and 27th, I’ll speak twice, on “Smart Aging” and on the IoT in retailing.

2015_IoT_SummitIn the past, the event was used to launch major IoT regulatory initiatives by the FTC, the only branch of the federal government that seems to really take the IoT seriously, and understand the need to protect personal privacy and security. My other fav component of last year’s summit was Camgian’s introduction of its Egburt, which combines “fog computing,” to analyze IoT data at “the edge,” and low power consumption. Camgian’s Gary Butler will be on the retail panel with me and with Rob van Kranenburg, one of the IoT’s real thought leaders.

This year’s program again combines a heady mix of IoT innovations and regulatory concerns. Some of the topics are:

  • The Internet of Things in Financial Services and the Insurance sector (panel includes my buddy Chris Rezendes of INEX).
  • Monetizing the Internet of Things and a look at what the new business models will be
  • The Connected Car
  • Connected living – at home and in the city
  • IoT as an enabler for industrial growth and competition
  • Privacy in a Connected World – a continuing balancing act

The speakers are a great cross-section of technology and policy leaders.

There’s still time to register.  Hope to see you there!

 

 

Deloitte provides process for nuanced IoT strategy decisions

So much of the Internet of Things is still in the gee-whiz stage that we haven’t seen much in terms of nuanced IoT strategies. By that I mean ones that carefully weigh tradeoffs between companies and consumers to try to find strategies that are mutually beneficial and recognize there are new factors at play in IoT strategies, such as privacy and data mining, that may have positive or negative consequences for the customer/company interplay.

Deloitte’s “University” has made an important step in that direction with its “Power Struggle: Customers, companies and the Internet of Things” paper, co-authored by Brenna Sniderman and Michael E. Raynor.

In it, they explore how to create sustainable strategies that will be mutually beneficial to the customer and company — which are not always immediately apparent, especially when you explore the subtleties of how these strategies might play out in the new reality of the Internet of Things.

The study’s goal was to understand the factors that can distort IoT’s benefits, and instead create win-win IoT strategies.

Sniderman and Raynor suggest there are four quadrants into which a given strategy might fall:

  1. (the sweet spot!) “All’s well: Sufficient value is created, and that value is shared between customers and companies sufficiently equitably such that both parties are better off and feel fairly treated.
  2. “Hobson’s choice: A Hobson’s choice exists when you’re free to decide but only one option exists; thus, it is really no choice at all…. Even when customers come out ahead compared with their former options, their implied powerlessness can lead to feelings of unfairness.
  3. “Gridlock: In their quest for value capture, both sides are pulled in opposite directions, with neither able to move toward an optimal outcome. Here, both parties recognize IoT enablement as something that should lead to success, but neither party is able to reach it, since their competing interests or different value drivers are working at cross purposes.
  4. “Customer is king: Although particular IoT deployments might make economic sense for companies, customers end up capturing a disproportionate share of the new value created, pulling this outcome more in the customers’ favor; Craigslist is an obvious example.”

According to the authors, a key to finding the win-win, “all’s well” solution is the Information Value Loop (which I first discussed last Spring) that creates value out of the vast increase in information made possible by the IoT.

As I mentioned then, “This fits nicely with one of my IoT ‘Essential Truths,’ that we need to turn linear information flows into cyclical ones to fully capitalize on the IoT.” When you do that, it’s possible to design continuous improvement processes that feed back data from actual users to fine tune products and processes.  GE has found it leads to much shorter iterative loops to design improved versions of its products.

Here’s the gussied-up version of the cool hand-drawn visualization from the Deloitte brainstorming session that led to the Information Value Loop (print it & place it on your wall next to the one on privacy and security that I wrote about a while ago):

Deloitte Information Value Loop

The information no longer flows in linear fashion: it’s created from using sensors to record how things act in the real world, then goes through the various stages of the loop, each of which is made possible by one of the new technologies enabling the IoT.  The goal is either enhanced M2M integration among things, or improved actions by humans, and, to be sustainable over time:

“A value loop is sustainable when both parties capture sufficient value, in ways that respect important non-financial sensibilities. For example, retailer-specific and independent shopping apps can use past browsing and purchasing history—along with other behaviors—to suggest targeted products to particular customers, rather than showing everyone the same generic products, as on a store shelf. Customers get what they want, and companies sell more.

…  “The amount of value created by information passing through the loop is a function of the value drivers identified in the middle. Falling into three generic categories—magnitude, risk, and time—the specific drivers listed are not exhaustive but only illustrative. Different applications will benefit from an emphasis on different drivers.”

OK, so how does this theory play out?

Sniderman and Raynor picked a range of IoT-informed strategies to illustrate the concept, some of which may include unintended consequences that would harm/turn off customers or companies. For example, “An ill-considered push for competitive advantage could well overreach and drive away skittish customers. Alternatively, building too dominant an advantage may leave customers feeling exploited or coerced, a position unlikely to prove viable in the long term.”

Understanding the underlying structure of each type of loop is critical, because they naturally pull an IoT strategy in a particular, divergent way.

The example they pick to illustrate the “all’s well” quadrant of results is the dramatic increase in built-in diagnostic technology in cars.  This is of great personal interest: genetic testing has revealed that I am one of the approximately 10% of men who are missing the male car gene: I can’t stand the things, and view them as a big block of metal and plastic just waiting to develop problems (or, ahem, get hit by deer …), so I need all the help I can get. Sniderman and Raynor zero in on maintenance as one area for win-win benefits for drivers and dealers through the IoT:

“Customers often have little understanding of which repairs are necessary, feel inconvenienced by having to go without their car during maintenance periods, and are frustrated by potential overcharges. In response, automakers are embedding sensors that can run a wide range of reliable diagnostics, allowing a car to “self-identify” service issues, rather than relying on customers (“Where’s that squeaking coming from?”) or mechanics (“You might want to replace those brake pads, since I’ve already got the wheels off”). This creates a level of objectivity of obvious customer value and enables automakers to differentiate their products. Interactive features that work with customers’ information can further add value by, for example, potentially syncing with an owner’s calendar to schedule a dealership appointment at a convenient time and reserving a loaner vehicle for the customer, pre-programmed with his preferences to minimize the frustration of driving an unfamiliar car.

In this scenario, both parties collaborate to provide and act on data, in a mutual exchange of value. The customer captures value in multiple ways: He enjoys increased convenience and decreased frustration, improved vehicle performance and longer operating life, reduced maintenance charges, and—since almost everything about this interaction is automated—fewer occasions for perceived exploitation at the hands of unscrupulous service providers.

Value capture extends to companies in the form of ongoing customer interaction. Linking maintenance programming to the dealership encourages customers to return for tune-ups rather than go elsewhere, ideally leading to continued purchases in the long term. OEMs can also access data regarding vehicle maintenance issues and may be able to identify systematic malfunctions worthy of greater attention. Dealers also have an opportunity to make inroads into an untapped market: Currently, just 30 percent of drivers use the dealer for routine maintenance…”

Kumbaya! But then there’s the opposite extreme, according to Sniderman and Raynor, represented by smart home devices, which would lead to the lose-lose, gridlock scenario.  I think they seriously underestimate the understanding already by manufacturers in the field that they need to embrace open standards in order to avoid a range of competing standards (Zigbee, Bluetooth, etc.) that will force consumers to invest in a variety of proprietary, incompatible hubs, and therefore discourage them from buying anything at all.  All you have to do is look at new hubs, such as Amazon’s Echo, which can control devices from WeMo, Hue, Quirky, Wink — you name ’em, to realize that sharing data is already the norm with smart home devices.

Because this missive is getting long, I’ll leave it to you, dear reader, to investigate Sniderman & Raynor’s examples of the “customer is king” scenario, in which the customer grabs too much of the benefit (have to admit, a lot of the location-based IoT retail incentives still give me the creeps: I hate shopping under the best of circumstances, and having something pop up on my phone offering me an incentive based on my past purchases makes a bad experience even worse. How about you?); and the “Hobson’s choice” one, in which usage-based car insurance runs amok and insurers begin to charge unsafe drivers a surcharge — as documented by the devices such as Progressive’s “Snapshot” (I was dismayed to read in the article that Progressive is in fact doing that in Missouri, although I guess it’s a logical consequence of having objective evidence that someone consistently drives unsafely).

I can’t help thinking that the 800-pound gorilla in the room in many of these situations are the Scylla and Charybdis of the IoT, threats to privacy and security, and that makes it even more important that your IoT strategies are well thought out.

They conclude that, from my perspective, data isn’t just enough, you also need the decidedly non-technical tools of judgment and wisdom (aided by tools such as their Information Value Loop) to come up with a sustainable, mutually advantageous IoT strategy:

“Identifying where the bottlenecks lie (using the Information Value Loop), how each party is motivated to respond, and seeking to shape both incentives and the value loop itself puts companies more in control of their destinies.

“Second, taking a hard look at who benefits most from each IoT-enabled transaction, understanding when a lopsided value-capture outcome tips too far and becomes unsustainable, and taking steps to correct it may also lead to long-term success.

“Lastly, an honest assessment of where IoT investments may not have an appreciable benefit—or may decrease one’s potential for value capture—is just as crucial to a company’s IoT strategy as knowing the right places to invest.”

I may quibble with some of their findings, such as those about smart homes, but bravo to Sniderman and Raynor for beginning what I hope is a spirited and sustained dialogue about how to create sustainable, mutually-advantageous IoT strategies!  I’ve weighed in with my Essential Truths, but what are you thinking about this critical issue, often overlooked in our concentration on IoT technologies? 

The IoT Can Revolutionize Every Aspect of Small Farming

When the New York Times weighs in on an Internet of Things phenomenon, you know it’s about to achieve mainstream consciousness, and that’s now the case with what I like to call “precision agriculture,” enabled by a combination of IoT sensors in the fields and big data analysis tools.

The combination is potent and vital because an adequate supply of safe food is so central to our lives, and meeting that need worldwide depends increasingly on small farms, which face a variety of obstacles that big agribusinesses don’t encounter.

Chris Rezendes, a partner in INEX Advisors, who’s been particularly active with IoT-based ag startups, pointed out to me in a private communication that the problem is world-wide, and particularly matched to the IoT’s capabilities, because food security is such a ubiquitous problem and because (surprisingly to me) the agricultural industry is dominated more by small farms, not agri-biz:

“… most people do not have an understanding of the dimensions of food security beyond calories. Feeding the world demands more than just calories. It demands higher nutritional quotient, safety, affordability and accessibility.

“And all that translates in many models into a need for a more productive, profitable and sustainable small ag industry.

“Most folks do not realize that that there are nearly 700 million farmers on the planet. In the US alone, we have 2.3 million ag operations (and, BTW, the number of millennials entering the field is nearly doubling each year) — and that is not counting processing, packaging, distribution, or anything related to fisheries. Most of those farms are pretty small … less than 500 acres on average, and when you strip out the conglomerates and the hobbyist farmers, you are left with hundreds of thousands of small businesses averaging nearly $4 million per year in revenue.”

As reported by The Times‘ Steve Lohr, Lance Donny, founder of ag technology start-up, OnFarm Systems, said the IoT’s benefits can be even greater outside the US:

“.. the most intriguing use of the technology may well be outside the United States. By 2050, the global population is projected to reach nine billion, up from 7.3 billion today. Large numbers of people entering the middle class, especially in China and India, and adopting middle-class eating habits — like consuming more meat, which requires more grain — only adds to the burden.

“To close the food gap, worldwide farm productivity will have to increase from 1.5 tons of grain per acre to 2.5 tons by 2050, according to Mr. Donny. American farm productivity is already above that level, at 2.75 tons of grain per acre.

“’But you can’t take the U.S. model and transport it to the world,’ Mr. Donny said, noting that American farming is both highly capital-intensive and large scale. The average farm size in the United States is 450 acres. In Africa, the average is about two acres.

“’The rest of the world has to get the productivity gains with data,’ he said.”

The marketplace and entrepreneurs are responding to the challenge. The Times piece also reported that IoT-enabled ag is now big business, with a recent study by AgFunder (equity crowdfunding for ag tech!) reporting start-ups have snared $2.06 billion in 228 deals so far this year (compared to $2.36 billion in all of 2014, which was itself a record).  When you add in the big funding that companies such as Deere have done in IoT over the last few years (in case you didn’t know it, this 178-year old company has revolutionized its operations with the IoT, creating new revenue streams and services in the process) and the cool stuff that’s even being produced here in Boston, and you’ve got a definite revolution in the most ancient of industries.

Rezendes zeros in on the small farmers’ need for data in order to improve every aspect of their operations, not just yields, and their desire to control their data themselves, rather than having it owned by some large, remote conglomerates. Most of all, he says, they desperately needed to improve their profitability, which is difficult with smaller farms:

“Those 2.3 million farmers will deploy IoT in their operations when they know that the data is relevant, actionable, profitable, secure and theirs.

“They are not going to deploy third-party solutions that capture farmers’ operational intelligence, claim ownership of it, and leverage the farmers’ livelihood for the solution vendors’ strategic goals.

“For example, we went into a series of explorations with one ag co-op in the East this spring, after going into the exploration thinking that we might be able to source a number of productivity enhancement solutions for vegetable growers and small protein program managers. We were wrong.

“These farmers in this one part of a New England state had been enjoying years of strong, if uneven growth in their output. That was not their challenge: their challenge was with profitability.”

Think of small farms near you, which must be incredibly nimble to market their products (after toiling in the fields!) relying heavily on a mix of CSAs, local restaurants that feature locally-sourced foods, and on farmers’ markets. Rezendes says the small farmers face a variety of obstacles because of their need (given their higher costs) to attract customers who would pay prevailing or (hopefully) premium prices, while they face perceptual problems because small farmers must be jacks-of-all-trades:

“They have only one ‘route.’ They market, sell, and deliver in the same ‘call,’ so their stops are often longer than your typical wholesale food routes. They also have only one marketing, sales and delivery team – and that is often the same team that is tilling, planting, watering, weeding, harvesting and repairing, so they often show up on accounts wearing clothes, driving vehicles, and carrying their inventory in containers that aren’t in any manual for slick brand development manual!

“To complicate things, many of their potential customers could not accept the shipment for insurance purposes, because the farmers didn’t have labels that change with exposure to extreme temperature, sunlight or moisture, or digital temperature recorders.”

Who would think that the IoT might provide a work-around for the perceptual barriers and underscore local farms’ great advantage, the quality of the product?  The farmers suggested to the INEX team once they understood the basics of IoT technology that:

“if we could source a low-cost traceability solution that they could attach to their reusable transport items, they thought they could use that data for branding within the co-op and the regional market. This would reduce the time needed to market and sell, document and file.  The farmers also told us that if the solution was done right, it might serve their regulatory, permitting and licensing requirements, even across state lines.”

Bottom line: not only can sensors in the field improve yields and cut costs for fertilizing and water use through precision, but other sensors can also work after the food is harvested, providing intelligence that lets producers prove their safety, enhance their sales productivity, and drive profit that enables re-investment.

What a great example of the IoT at work, and how, when you start to think in terms of the IoT’s “Essential Truths,” it can revolutionize every aspect of your company, whether a 50-acre farm or a global manufacturer!  

McKinsey IoT Report Nails It: Interoperability is Key!

I’ll be posting on various aspects of McKinsey’s new “The Internet of Things: Mapping the Value Beyond the Hype” report for quite some time.

First of all, it’s big: 148 pages in the online edition, making it the longest IoT analysis I’ve seen! Second, it’s exhaustive and insightful. Third, as with several other IoT landmarks, such as Google’s purchase of Nest and GE’s divestiture of its non-industrial internet division, the fact that a leading consulting firm would put such an emphasis on the IoT has tremendous symbolic importance.

McKinsey report — The IoT: Mapping the Value Beyond the Hype

My favorite finding:

“Interoperability is critical to maximizing the value of the Internet of Things. On average, 40 percent of the total value that can be unlocked requires different IoT systems to work together. Without these benefits, the maximum value of the applications we size would be only about $7 trillion per year in 2025, rather than $11.1 trillion.” (my emphasis)

This goes along with my most basic IoT Essential Truth, “share data.”  I’ve been preaching this mantra since my 2011 book, Data Dynamite (which, if I may toot my own horn, I believe remains the only book to focus on the sweeping benefits of a paradigm shift from hoarding data to sharing it).

I was excited to see that the specific example they zeroed in on was offshore oil rigs, which I focused on in my op-ed on “real-time regulations,” because sharing the data from the rig’s sensors could both boost operating efficiency and reduce the chance of catastrophic failure. The paper points out that there can be 30,000 sensors on an rig, but most of them function in isolation, to monitor a single machine or system:

“Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.”

Yet, the researchers found that only about 1% of the rig data was being used, because it rarely was shared off the rig with other in the company and its ecosystem!

The section on interoperability goes on to talk about the benefits — and challenges — of linking sensor systems in examples such as urban traffic regulation, that could link not only data from stationary sensors and cameras, but also thousands of real-time feeds from individual cars and trucks, parking meters — and even non-traffic data that could have a huge impact on performance, such as weather forecasts.  

While more work needs to be done on the technical side to increase the ease of interoperability, either through the growing number of interface standards or middleware, it seems to me that a shift in management mindset is as critical as sensor and analysis technology to take advantage of this huge increase in data:

“A critical challenge is to use the flood of big data generated by IoT devices for prediction and optimization. Where IoT data are being used, they are often used only for anomaly detection or real-time control, rather than for optimization or prediction, which we know from our study of big data is where much additional value can be derived. For example, in manufacturing, an increasing number of machines are ‘wired,’ but this instrumentation is used primarily to control the tools or to send alarms when it detects something out of tolerance. The data from these tools are often not analyzed (or even collected in a place where they could be analyzed), even though the data could be used to optimize processes and head off disruptions.”

I urge you to download the whole report. I’ll blog more about it in coming weeks.

Exploiting full potential of iBeacons for Internet of Things

One of the most exciting aspects of the Internet of Things is seeing how, when more people are exposed to one of its technologies, they find uses for it that the inventors might not have visualized.  I give you … the iBeacon.

The Apple protocol (again, my obligatory disclaimer that I work part-time at an Apple Store, but have no inside information or any obligation to hype their tech) is used in Bluetooth low-energy transmitters (“beacons”) that broadcast their location to nearby devices so they can perform actions such as social-media check-ins or push notifications while near the beacon.  They’re most frequently used in marketing to offer targeted bargains, and primarily have been used by the biggest retailers and sites such as major-league ballparks, but, as you’ll see, not always.

At the Re-Work Internet of Things Summit I met two young entrepreneurs, Justin Mann and Ben Smith  of Beacons in Space, a Boston startup that would allow new apps to leverage existing installed iBeacons — typically installed by large retailers and closed to others —  instead of having to add more beacons in a given space. This would be done through a subscription model with a simple API on top of a beacon rental marketplace. It would allow smaller developers can scale their developments and projects without having to invest in a redundant iBeacon array.

But I was particularly interested in how some clever developers are applying iBeacons outside retail settings.

One is at the Zoom Torino Biopark in Cumiana, Italy. iBeacons around the zoo trigger an app including an interactive map that helps visitors move around the park by giving their exact location and showing where other attractions are located.

“As visitors discover the six different habitat environments of the park, they will be able to unlock specific details, facts and suggestions throughout their journey thanks to hidden Bluetooth transmitting beacons, which trigger relevant content on a visitor’s smartphone based on their location.

“Users will also benefit from alerts on their mobile device informing them of special events during their visit, like meeting animals or presentations. By engaging with the app, visiting certain locations within the park and answering quiz questions, visitors can also earn promotional items and discount coupons for use within the park.”

installing iBeacon on Bucharest trolley to guide visually-impaired

Best of all,  Romania is using them in a very clever system, The Smart Public Transport (SPT) solution, to give visually-impaired riders audio clues through their smartphone about Bucharest’s bus system, a joint project of the Smart Public Transport project and Romania’s RATB trolley buses. Onyx Beacon, a Romanian company, is installing 500 Beacons on the city’s most heavily used public transportation vehicles (the project, incidentally, was funded by Vodafone under its “Mobile for Good” program, encouraging use of technology for social programs and to solve specific problems of those with special personal needs).

All of these projects show the utility — provided there are privacy and security provisions built in, and the systems are opt-in, of iBeacons for giving hyper-localized information and offers. If the Beacons in Space concept takes off, to eliminate the need to deploy more iBeacons for every new app, the concept might really become an important part of the IoT, whether for retail or civic uses.

Sensors remain critical to spread of Internet of Things

What happens with sensor design, cost, and security remains front-and-center with the Internet of Things, no matter how much we focus on advanced analytical tools and the growing power of mobile devices.

That’s because, on one hand, truly realizing the IoT’s full potential will require that at least some sensors get to the low-power, tiny size and cheap costs needed to realize Kris Pister’s dream of “smart dust” sensors that can be strewn widely.

On the other hand, there’s the chance that low-end sensors that don’t include adequate security firmware can’t keep up with the changing nature of security risks and may give hackers access to the entire network, with potentially disastrous effects.

That’s why several reports on sensors caught my eye.

PWC released a report, Sensing the Future of the Internet of Things, zeroing in on sensor sales as a proxy for increased corporate investment in the IoT, and concluding that by that measure, “the IoT movement is underway.” Based on its 2014 survey of 1,500 business and technology leaders worldwide, there was one eye-popping finding: the US lags behind the entire rest of the world in planned spending on sensors this year: 26% of Asian and almost as many from South America (percentage not given)  followed closely by Africa, with 18%.  The surprising laggards? Europe with 8% and North America, dead last at only 7%.  Hello?????

Equally interesting was the company’s listing of the industry segments leading the deployment of sensors and examples of the sensors they’re using:

  • Energy & Mining: 33%. “Sensors continuously monitor and detect dangerous carbon monoxide levels in mines to improve workplace safety.”
  • Power and Utilities: 32%.  Instead of the old one-way metering, “Internet-connected smart meters measure power usage every 15 minutes and provide feedback to the power consumer, sometimes automatically adjusting the system’s parameters.”
  • Automotive: 31%.  “Sensors and beacons embedded in the road working together with car-based sensors are used for hands-free driving, traffic pattern optimization and accident avoidance.”
  • Industrial: 25%. “A manufacturing plant distributes plant monitoring and optimization tasks across several remote, interconnected control points. Specialists once needed to maintain, service and optimize distributed plant operations are no longer required to be physically present at the plant location, providing economies of scale.”
  • Hospitality: 22%. “Electronic doorbells silently scan hotel rooms with infrared sensors to detect body heat, so the staff can clean when guests have left the room.”
  • Health Care: 20%. “EKG sensors work together with patients’ smartphones to monitor and transmit patient physical environment and vital signs to a central cloud-based system.”
  • Retail: 20%. “Product and shelf sensors collect data throughout the entire supply chain—from dock to shelf. Predictive analytics applications process this data and optimize the supply chain.”
  • Entertainment: 18%. “In the gaming world, companies use tracking sensors to transfer the movements of users onto the screen and into the action.”
  • Technology: 17%. “Hardware manufacturers continue to innovate by embedding sensors to measure performance and predict maintenance needs before they happen.”
  • Financial Services: 13%. “Telematics allows devices installed in the car to transmit data to drivers and insurers. Applications like stolen vehicle recovery, automatic crash notification, and vehicle data recording can minimize both direct and indirect costs while providing effective risk management.”

The surprises there were that health care penetration was so low, especially because m-health can be so helpful in diagnosis and treatment, while the examples of telematics seemed off the mark in the financial services category. Why not examples such as ApplePay?

More compelling were the relatively high rates of sensor deployment in high-stakes fields such as energy, utilities, and automotive: those are such huge industries, and the benefits of real-time data are so compelling that they show the IoT is really maturing.

Finally, the percentage of companies investing in sensors grew slightly, from 17% to 20%, with 25%of what PWC labels “Top Performers” are investing in them compared to 18% the previous year. Surprisingly, most companies don’t get it about sensors’ importance: only “14% of respondents said sensors would be of the highest strategic importance to their organizations in the next 3–5 years, as compared to other emerging technologies.”

Most important, 54% of those “Top Performers” said they’d invest in sensors this year.


 

Sensors’ promise as the size decreases — radically — and functionality increases was highlighted by The Guardian.  It focused on PragmaticIC Printing, a British firm that prints tiny, hairlike sensors on plastics. CEO Scott White’s hope is that:

” the ultra-thin microcircuits will soon feature on wine bottles to tell when a Chablis is at the perfect temperature and on medication blister packs to alert a doctor if an elderly patient has not taken their pills.

“With something which is slimmer than a human hair and very flexible, you can embed that in objects in a way that is not apparent to the user until it is called upon to do something. But also the cost is dramatically lower than with conventional silicon so it allows it to be put in products and packaging that would never justify the cost of a piece of normal electronics,” said White.

 

These uses certainly meet my test of real innovation: what can you do that you couldn’t do before. Or, as White puts it, “It is the combination of those factors [price and size] which allows us to start thinking about doing things with this which wouldn’t even be conceivable with conventional silicon based electronics.”

Another article that really caught my eye regarded a new category of “hearable” — and perhaps even, more radically, “disappearables” –sensors which the headline boldly predicted “As Sensors Shrink, Wearables Will Dis-appear.” But they were barely here in the first place, LOL!  The article mentioned significant breakthroughs in reducing sensors’ size and energy requirements, as well as harvesting ambient energy produced by sources such as bodily movement:

“Andrew Sheehy of Generator Research calculates that, for example, the heat in a human eyeball could power a 5 milliwatt transmitter – more than enough, he says, to power a connection from a smart contact lens to a smartphone or other controlling device.”

 The same article mentioned some cutting-edge research such as a Google/Novartis collaboration to measure glucose levels in tears via a contact lense, and an edible embedded microchip — the size of a grain of sand — and powered by stomach juices, which would transmit data by Bluetooth.
Elsewhere, a sampling of sensor design breakthroughs in recent months show the potential for radical reductions in costs and energy needs as well as increased sensitivity and data yield:

HOWEVER, as I said above, here’s what worries me. Are developers paying enough attention to security and privacy? That could be a real downfall for the IoT, since many sensors tend to be in place for years, and the nature of security challenges can change dramatically during that time.  Reducing price can’t be at the expense of security.

Let me know what steps you’re taking to boost sensor security, and I’ll mention them in a future post!

Outside the (Shoe) Box Internet of Things Thinking!

Posted on 30th March 2015 in design, Internet of Things, retail, strategy, wearables

Could someone please forward this to Carrie Bradshaw? I don’t think she reads this blog, but she’d definitely be interested!

I’ve got to confess that I’m usually oblivious to the world of fashion — or appalled by it (there’s a current ad by Gucci in one of my wife’s magazines that frankly scares me: not sure which looks more weird: the emaciated, heavily-made-up model or the dress!), but this one caught my eye as a way women can have a more versatile wardrobe that takes up less space and saves them money!  Neat, huh?

Equally important, it may be the precursor of a wide range of mass-customized Internet of Things devices of all types that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes.

Ishuu, a Lithuanian startup, is creating a new line of très stylish women’s shoes, Volvorii, that include a strip of e-ink material (similar to a Kindle screen) that can be customized by the owner simply by opening an app on her phone! The requisite electronics are housed in the heels.

As of this writing, the Volvorii Indegogo campaign has raised $34,000 of its $50,000 target, with 14 days to go. If I didn’t send every spare dollar to Loyola University – Maryland for my son’s tuition, I think I’d drop a few on this one: it really intrigues me!

If Ishuu is smart, I’d suggest that they throw open the API for the shoes, and allow bright young fashion design students to submit new designs for the insert.

As for those IoT-based products that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes, here are a few more exciting examples to get you noodling about how you might redesign your own products to capitalize on this potential:

What I love about this as a consumer is that we will no longer have to make difficult binary choices between products: instead of either/or, it will be this/and this (in the case of the Watch and these shoes, I love that there will be so many choices that you’ll be able to change your choice on the fly depending on your mood or other factors.  I’m going to choose toe-tapping Mickey when I’m with my grandchildren, the Utility to keep track of biz during the day, and the Simple for more dignified evening wear.

These fall into my What Can You Do Now That You Couldn’t Do Before category. It’s going to take us a while to ditch our old, more limited mindsets, but the rest will be better for everyone.

Disney MagicBands: as important symbolically for IoT as substantively!

(I’ve been meaning to write about this particular IoT device for a long time — my apologies for the delay)

I have no objective evidence for this, but I suspect that many C-level executives first learned about e-commerce when they placed personal orders during the Christmas season of 1995. Thus, Amazon deserves a disproportionate share of credit for launching the e-commerce era.

Magic Bands play a number of roles at Disney parks

Similarly, I suspect that many C-level executives’ first direct experience with the Internet of Things has come, or may come this holiday season, with their family’s first visit to Disneyworld since Disney began the beta testing of its MagicBands, which are arguably the most high-profile public IoT devices so far.

IMHO, Disney deserves a lot of credit for such a public IoT project, especially many of the initial reviews were decidedly mixed due to technical and management glitches — risking irritating customers. 

The project reportedly cost north of $1 billion.

The major lesson to decision makers in other industries to be gained from the MagicBand is my favorite IoT “Essential Truth“: who else can use this data?

Disney uses the band data, either by itself, or aggregated with other visitors, to improve almost every aspect of park operations, marketing, and the customer experience — illustrating the versatility of IoT devices:

  • control logistics, speeding entry to the park and individual rides
  • coordinate outside transportation
  • balance demand for various rides
  • add new functionality to existing technology such as the Disney app
  • control mechanical systems, such as hotel door locks
  • add a social component (and avoid the stresses of families getting
  • handle and speed in-park financial transactions
  • personalize the park experience and improve customer satisfaction
  • harvest and analyze big data on customer preferences.

The bands, which work because they have RFID chips inside, are worn on your wrist throughout your stay at the parks. When you book the trip, Disney lets you choose your favorite color, and the band comes in a presentation box with your name on it.

Before leaving, you can program it in conjunction with the My Disney Experience app and web page, entering key choices such as hotels, your favorite rides (FastPass+), dinner reservations, etc., and your credit card info so that they can be used to pay for meals and merchandise.

Disney warns visitors not to pack the bracelets in their luggage, because they are even used to board the transportation from the Orlando airport.

Putting aside the programming involved, this had to be a tremendous logistical challenge, changing the hotel locks, installing readers at each ride, putting readers in the restaurants and shops, which probably accounts for many of the glitches that customers reported during the pilot phase.

My future son-in-law, Greg Jueneman, who knows EVERYTHING about Disneyland, weighs in from a customer standpoint:

“I think they take the spontaneity out of a Disney World vacation. Everything has to be planned in advance and a schedule has to be followed. As a technology they are cool, I’m sure Disney had lots of plans for them but so far the only real thing that they do is open your hotel room without a “key” and allow you to pay for things without your cards (I’m sure Disney loves that! – some blogs Ifollow have said that spending with Magic Bands is up 40%, that’s impressive!).”

As you can imagine, there are also important data privacy and security issues: on one hand, it would probably be very cool to have Mickey come up to you and say “happy 5th birthday, Jeremy,” but that could also creep parents out, and you’d be worried about someone running up a tab on your credit card if you mislaid the band.

From my reading of the most recent media coverage, it appears that most of the beta test problems have been worked out, and that Disney is fully-committed to universal use of the bands in the future.

If you’re visiting Disney this holiday season, think about possible IoT strategy lessons for your company from the MagicBand:

  • marketing: how it can personalize the customer experience and increase sales?
  • transactions: how can it streamline transactions (have to think that Apple looked carefully at this in designing Apple Pay)?
  • operations: how can real-time data from many users help streamline operations and reduce congestion?

Maybe you can write off the family vacation as research! Have fun.

 

http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management